336
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Engineering response of biomedical grade isotactic polypropylene reinforced with titanium nitride nanoparticles for material extrusion three-dimensional printing

, ORCID Icon, , , , , & ORCID Icon show all

References

  • Adomavičiūtė, E., Baltušnikaitė-Guzaitienė, J., Juškaitė, V., Žilius, M., Briedis, V., & Stanys, S. (2018). Formation and characterization of melt-spun polypropylene fibres with propolis for medical applications. The Journal of the Textile Institute, 109(2), 278–284. https://doi.org/10.1080/00405000.2017.1341295
  • Alam, F., Varadarajan, K. M., & Kumar, S. (2020). 3D printed polylactic acid nanocomposite scaffolds for tissue engineering applications. Polymer Testing, 81, 106203. https://doi.org/10.1016/j.polymertesting.2019.106203
  • Aumnate, C., Potiyaraj, P., Saengow, C., & Giacomin, A. J. (2021). Reinforcing polypropylene with graphene-polylactic acid microcapsules for fused-filament fabrication. Materials and Design, 198, 109329. https://doi.org/10.1016/j.matdes.2020.109329
  • Bi, J., Yang, J., Liu, X., Wang, D., Yang, Z., Liu, G., & Wang, X. (2021). Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells. International Journal of Hydrogen Energy, 46(1), 1144–1154. https://doi.org/10.1016/j.ijhydene.2020.09.217
  • Bichara, L. C., Alvarez, P. E., Fiori Bimbi, M. V., Vaca, H., Gervasi, C., & Brandán, S. A. (2016). Structural and spectroscopic study of a pectin isolated from citrus peel by using FTIR and FT-raman spectra and DFT calculations. Infrared Physics and Technology, 76, 315–327. https://doi.org/10.1016/j.infrared.2016.03.009
  • Bouzakis, K.-D., Michailidis, N., Vidakis, N., Eftathiou, K., Kompogiannis, S., & Erkens, G. (2000). Interpretation of PVD coated inserts wear phenomena in turning. CIRP Annals, 49(1), 65–68. https://doi.org/10.1016/S0007-8506(07)62897-2
  • Bouzakis, K.-D., Vidakis, N., Kallinikidis, D., Leyendecker, T., Erkens, G., Wenke, R., & Fuss, H.-G. (1998). Fatigue failure mechanisms of multi- and monolayer physically vapour-deposited coatings in interrupted cutting processes. Surface and Coatings Technology, 108-109, 526–534. https://doi.org/10.1016/S0257-8972(98)00636-7
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157. https://doi.org/10.1016/j.matdes.2017.03.065
  • Chalmers, J. M., Everall, N. J., Schaeberle, M. D., Levin, I. W., Neil Lewis, E., Kidder, L. H., & Crocombe, R. (2002). FT-IR imaging of polymers: An industrial appraisal. Vibrational Spectroscopy, 30(1), 43–52. https://doi.org/10.1016/S0924-2031(02)00037-1
  • Chang, A., Babhadiashar, N., Barrett-Catton, E., & Asuri, P. (2020). Role of nanoparticle–polymer interactions on the development of double-network hydrogel nanocomposites with high mechanical strength. Polymers, 12(2), 470. https://doi.org/10.3390/polym12020470
  • Chen, Z., Han, S., Zhou, S., Feng, H., Liu, Y., & Jia, G. (2020). Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact, 18, 100224. https://doi.org/10.1016/j.impact.2020.100224
  • Crosby, A. J., & Lee, J. (2007). Polymer nanocomposites: The “Nano” effect on mechanical properties. Polymer Reviews, 47(2), 217–229. https://doi.org/10.1080/15583720701271278
  • Ee, L. Y., & Yau Li, S. F. (2021). Recent advances in 3D printing of nanocellulose: Structure, preparation, and application prospects. Nanoscale Advances, 3(5), 1167–1208. https://doi.org/10.1039/D0NA00408A
  • Fischer, J., Echsel, M., Springer, P., & Refle, O. (2023). In-line measurement of extrusion force and use for nozzle comparison in filament based additive manufacturing. Progress in Additive Manufacturing, 8(1), 9–17. https://doi.org/10.1007/s40964-022-00385-5
  • Foss, R. A., & Dannhauser, W. (1963). Electrical conductivity of polypropylene. Journal of Applied Polymer Science, 7(3), 1015–1022. https://doi.org/10.1002/app.1963.070070318
  • Gao, M., Wang, Z., Zheng, H., Wang, L., Xu, S., Liu, X., & Cai, X. (2020). Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angewandte Chemie (International ed. in English), 59(9), 3618–3623. https://doi.org/10.1002/anie.201913035
  • Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., & Arias, A. (2020). Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties. Materials and Design, 188, 108414. https://doi.org/10.1016/j.matdes.2019.108414
  • Gatin, E., Iordache, S.-M., Matei, E., Luculescu, C.-R., Iordache, A.-M., Grigorescu, C. E. A., & Ilici, R. R. (2022). Raman spectroscopy as spectral tool for assessing the degree of conversion after curing of two resin-based materials used in restorative dentistry. Diagnostics (Basel, Switzerland), 12(8), 1993. https://doi.org/10.3390/diagnostics12081993
  • Ghabezi, P., Flanagan, T., & Harrison, N. (2022). Short basalt fibre reinforced recycled polypropylene filaments for 3D printing. Materials Letters, 326, 132942. https://doi.org/10.1016/j.matlet.2022.132942
  • Gnanasekaran, K., Heijmans, T., van Bennekom, S., Woldhuis, H., Wijnia, S., de With, G., & Friedrich, H. (2017). 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Applied Materials Today, 9, 21–28. https://doi.org/10.1016/j.apmt.2017.04.003
  • Gopanna, A., Rajan, K. P., Thomas, S. P., & Chavali, M. (2019). Chapter 6 – Polyethylene and polypropylene matrix composites for biomedical applications. In V. Grumezescu & A. M. B. T.-M. Grumezescu (Eds.), Materials for biomedical engineering (pp. 175–216). Elsevier. https://doi.org/10.1016/B978-0-12-816874-5.00006-2
  • Gu, C., Meng, X., Wang, S., & Ding, X. (2020). Study on the mutual influence of surface roughness and texture features of rough-textured surfaces on the tribological properties. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235(2), 256–273. https://doi.org/10.1177/1350650120940211
  • Guan, J., Derdouri, A., Ashrafi, B., Benhalima, A., Kim, K. S., Daroszewska, M., & Simard, B. (2019). Boron nitride nanotubes reinforced polycarbonate nanocomposites. Materials Today Communications, 20, 100586. https://doi.org/10.1016/j.mtcomm.2019.100586
  • Hariprasad, K., Ravichandran, K., Jayaseelan, V., & Muthuramalingam, T. (2020). Acoustic and mechanical characterisation of polypropylene composites ­reinforced by natural fibres for automotive applications. Journal of Materials Research and Technology, 9(6), 14029–14035. https://doi.org/10.1016/j.jmrt.2020.09.112
  • Imran, R., Al Rashid, A., & Koç, M. (2023). Material extrusion 3D printing (ME3DP) process simulations of polymeric porous scaffolds for bone tissue engineering.
  • Jansz, J. (1999). Polypropylene in automotive applications BT – Polypropylene: An A-Z reference. (Karger-Kocsis, J., Ed., pp 643–651), Springer Netherlands. https://doi.org/10.1007/978-94-011-4421-6_87
  • Jin, M., Neuber, C., & Schmidt, H.-W. (2020). Tailoring polypropylene for extrusion-based additive manufacturing. Additive Manufacturing, 33, 101101. https://doi.org/10.1016/j.addma.2020.101101
  • Jin, S., Zhang, Y., Wang, Q., Zhang, D., & Zhang, S. (2013). Influence of TiN coating on the biocompatibility of medical NiTi alloy. Colloids and Surfaces. B, Biointerfaces, 101, 343–349. https://doi.org/10.1016/j.colsurfb.2012.06.029
  • Joseph, B., James, J., Kalarikkal, N., & Thomas, S. (2021). Recycling of medical plastics. Advanced Industrial and Engineering Polymer Research, 4(3), 199–208. https://doi.org/10.1016/j.aiepr.2021.06.003
  • Kattinger, J., Ebinger, T., Kurz, R., & Bonten, C. (2022). Numerical simulation of the complex flow during material extrusion in fused filament fabrication. Additive Manufacturing, 49, 102476. https://doi.org/10.1016/j.addma.2021.102476
  • Kazemi, M., Ahangarani, S., Esmailian, M., & Shanaghi, A. (2020). Investigation on the corrosion behaviour and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications. Surface and Coatings Technology, 397, 126044. https://doi.org/10.1016/j.surfcoat.2020.126044
  • Khan, A., Puttegowda, M., Jagadeesh, P., Marwani, H. M., Asiri, A. M., Manikandan, A., & Siengchin, S. (2022). Review on nitride compounds and its polymer composites: A multifunctional material. Journal of Materials Research and Technology, 18, 2175–2193. https://doi.org/10.1016/j.jmrt.2022.03.032
  • Kim, H.-G., Hajra, S., Oh, D., Kim, N., & Kim, H. J. (2021). Additive manufacturing of high-performance carbon-composites: An integrated multi-axis pressure and temperature monitoring sensor. Composites Part B: Engineering, 222, 109079. https://doi.org/10.1016/j.compositesb.2021.109079
  • Koerner, G. R., Hsuan, Y. G., & Koerner, R. M. 3. (2007). The durability of geosynthetics. In R. W. Sarsby (Ed.), Geosynthetics in civil engineering (pp. 36–65). Woodhead Publishing. https://doi.org/10.1533/9781845692490.1.36
  • Li, H., Zhou, Y., Liu, Y., Li, L., Liu, Y., & Wang, Q. (2021). Dielectric polymers for high-temperature capacitive energy storage. Chemical Society Reviews, 50(11), 6369–6400. https://doi.org/10.1039/d0cs00765j
  • Liao, Y., Liu, C., Coppola, B., Barra, G., Di Maio, L., Incarnato, L., & Lafdi, K. (2019). Effect of porosity and crystallinity on 3D printed PLA properties. Polymers, 12(1), 1487.), https://doi.org/10.3390/polym11091487
  • Lin, Z., Guo, X., He, Z., Liang, X., Wang, M., & Jin, G. (2021). Thermal degradation kinetics study of molten polylactide based on raman spectroscopy. Polymer Engineering & Science, 61(1), 201–210. https://doi.org/10.1002/pen.25568
  • Liu, X., Zou, Y., Li, W., Cao, G., & Chen, W. (2006). Kinetics of thermo-oxidative and thermal degradation of poly(d,l-Lactide) (PDLLA) at processing temperature. Polymer Degradation and Stability, 91(12), 3259–3265. https://doi.org/10.1016/j.polymdegradstab.2006.07.004
  • Liu, Y., Wang, L., Cao, K., & Sun, L. (2021). Review on the durability of polypropylene fibre-reinforced concrete. Advances in Civil Engineering, 2021, 1–13. https://doi.org/10.1155/2021/6652077
  • Luiz, B. K. M., Amboni, R. D. M. C., Prates, L. H. M., Roberto Bertolino, J., & Pires, A. T. N. (2007). Influence of drinks on resin composite: evaluation of degree of cure and color change parameters. Polymer Testing, 26(4), 438–444. https://doi.org/10.1016/j.polymertesting.2006.12.005
  • Ma, Y., Wisuthiphaet, N., Bolt, H., Nitin, N., Zhao, Q., Wang, D., & Sun, G. (2021). N-halamine polypropylene nonwoven fabrics with rechargeable antibacterial and antiviral functions for medical applications. ACS Biomaterials Science & Engineering, 7(6), 2329–2336. https://doi.org/10.1021/acsbiomaterials.1c00117
  • Makarem, M., Lee, C. M., Kafle, K., Huang, S., Chae, I., Yang, H., & Kim, S. H. (2019). Probing cellulose structures with vibrational spectroscopy. Cellulose, 26(1), 35–79. https://doi.org/10.1007/s10570-018-2199-z
  • May, K., Dapprich, S., Furche, F., Unterreiner, B., & V; Ahlrichs, R. (2000). Structures, C–H and C–CH3 bond energies at borders of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2(22), 5084–5088. https://doi.org/10.1039/b005595f
  • Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The potential of additive manufacturing in the smart factory industrial 4.0: A review. Applied Sciences, 9(18), 3865. https://doi.org/10.3390/app9183865
  • Mohan Bhasney, S., Kumar, A., & Katiyar, V. (2020). Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B: Engineering, 184, 107717. https://doi.org/10.1016/j.compositesb.2019.107717
  • Montoro, O. R., Taravillo, M., San Andrés, M., de la Roja, J. M., Barrero, A. F., Arteaga, P., & Baonza, V. G. (2014). Raman spectroscopic study of the formation of fossil resin analogues. Journal of Raman Spectroscopy, 45(11-12), 1230–1235. https://doi.org/10.1002/jrs.4588
  • Mourad, A.-H I. (2010). Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Materials and Design, 31(2), 918–929. https://doi.org/10.1016/j.matdes.2009.07.031
  • Navarro Oliva, F. S., Sahihi, M., Lenglet, L., Ospina, A., Guenin, E., Jaramillo-Botero, A., & Bedoui, F. (2023). Nanoparticle size and surface chemistry effects on mechanical and physical properties of nano-reinforced polymers: The case of PVDF-Fe3O4 nano-composites. Polymer Testing, 117, 107851. https://doi.org/10.1016/j.polymertesting.2022.107851
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
  • Nguyen, T. A., Nguyen, T. H., Nguyen, T. V., Thai, H., & Shi, X. (2016). Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings. Journal of Nanoscience and Nanotechnology, 16(9), 9874–9881. https://doi.org/10.1166/jnn.2016.12162
  • Perevedentseva, E., Lin, Y.-C., Karmenyan, A., Wu, K.-T., Lugovtsov, A., Shirshin, E., & Cheng, C.-L. (2021). Raman spectroscopic study of TiO2 nanoparticles’ effects on the hemoglobin state in individual red blood cells. Materials (Basel, Switzerland), 14(20), 5920. https://doi.org/10.3390/ma14205920
  • Petersmann, S., Spoerk-Erdely, P., Feuchter, M., Wieme, T., Arbeiter, F., & Spoerk, M. (2020). Process-induced morphological features in material extrusion-based additive manufacturing of polypropylene. Additive Manufacturing, 35, 101384. https://doi.org/10.1016/j.addma.2020.101384
  • Petousis, M., Michailidis, N., Papadakis, V. M., Korlos, A., Mountakis, N., Argyros, A., & Vidakis, N. (2023). Optimizing the rheological and thermomechanical response of acrylonitrile butadiene styrene/silicon nitride nanocomposites in material extrusion additive manufacturing. Nanomaterials (Basel, Switzerland), 13(10), 1588. https://doi.org/10.3390/nano13101588
  • Petousis, M., Vidakis, N., Mountakis, N., Moutsopoulou, A., Papadakis, V. M., Maravelakis, E., & Maravelakis, E. (2023). On the substantial mechanical reinforcement of polylactic acid with titanium nitride ceramic nanofillers in material extrusion 3D printing. Ceramics International, 49(10), 16397–16411. https://doi.org/10.1016/j.ceramint.2023.02.001
  • Rashid, A. A., & Koç, M. (2021). Fused filament fabrication process: A review of numerical simulation techniques. Polymers, 13(20), 3534. https://doi.org/10.3390/polym13203534
  • Razavi, A. (2001). Polypropylene: Syndiotactic. In K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, & P. Veyssière (Eds.), Encyclopedia of materials: Science and technology (pp. 7708–7711). Elsevier. https://doi.org/10.1016/B0-08-043152-6/01383-8
  • Resta, V., Quarta, G., Lomascolo, M., Maruccio, L., & Calcagnile, L. (2015). Raman and photoluminescence spectroscopy of polycarbonate matrices irradiated with different energy 28Si + ions. Vacuum, 116, 82–89. https://doi.org/10.1016/j.vacuum.2015.03.005
  • Rouf, S., Malik, A., Singh, N., Raina, A., Naveed, N., Siddiqui, M. I. H., & Haq, M. I. U. (2022). Additive manufacturing technologies: Industrial and medical app­lications. Sustainable Operations and Computers, 3, 258–274. https://doi.org/10.1016/j.susoc.2022.05.001
  • Saadat, A., Nazockdast, H., Sepehr, F., & Mehranpour, M. (2010). Linear and nonlinear melt rheology and extrudate swell of acrylonitrile-butadiene-styrene and organoclay-filled acrylonitrile-butadiene-styrene nanocomposite. Polymer Engineering & Science, 50(12), 2340–2349. https://doi.org/10.1002/pen.21769
  • Sam-Daliri, O., Ghabezi, P., Flanagan, T., Finnegan, W., Mitchell, S., & Harrison, N. (2022). Recovery of particle reinforced composite 3D printing filament from recycled industrial polypropylene and glass fibre waste [Paper presentation]. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering, 177, 3–4. https://doi.org/10.11159/icmie22.143
  • Sam-Daliri, O., Ghabezi, P., Steinbach, J., Flanagan, T., Finnegan, W., Mitchell, S., & Harrison, N. (2023). Experimental study on mechanical properties of material extrusion additive manufactured parts from recycled glass fibre-reinforced polypropylene composite. Composites Science and Technology, 241, 110125. https://doi.org/10.1016/j.compscitech.2023.110125
  • Santecchia, E., Hamouda, A. M. S., Musharavati, F., Zalnezhad, E., Cabibbo, M., & Spigarelli, S. (2015). Wear resistance investigation of titanium nitride-based coatings. Ceramics International, 41(9), 10349–10379. https://doi.org/10.1016/j.ceramint.2015.04.152
  • Seo, Y., Kim, J., Kim, K. U., & Kim, Y. C. (2000). Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene. Polymer (Polymer), 41(7), 2639–2646. https://doi.org/10.1016/S0032-3861(99)00425-5
  • Setoura, K., & Ito, S. (2021). Quantifying the durability of transition metal nitrides in thermoplasmonics at the single-nanoparticle level. AIP Advances, 11(11), 115027. https://doi.org/10.1063/5.0074139
  • Shanmugam, V., Rajendran, D. J. J., Babu, K., Rajendran, S., Veerasimman, A., Marimuthu, U., & Hedenqvist, M. S. (2021). The mechanical testing and ­performance analysis of polymer-fibre composites prepared through the ­additive manufacturing. Polymer Testing, 93, 106925. https://doi.org/10.1016/j.polymertesting.2020.106925
  • Spoerk, M., Holzer, C., & Gonzalez-Gutierrez, J. (2020). Material extrusion-based additive manufacturing of polypropylene: A review on how to improve dimensional inaccuracy and warpage. Journal of Applied Polymer Science, 137(12), 48545. https://doi.org/10.1002/app.48545
  • Stuart, B. H. (1996). Temperature studies of polycarbonate using Fourier transform Raman spectroscopy. Polymer Bulletin, 36(3), 341–346. https://doi.org/10.1007/BF00319235
  • Synytsya, A., Čopíková, J., Matějka, P., & Machovič, V. (2003). Fourier transform raman and infrared spectroscopy of pectins. Carbohydrate Polymers, 54(1), 97–106. https://doi.org/10.1016/S0144-8617(03)00158-9
  • Thomann, R., Kressler, J., Rudolf, B., & Mülhaupt, R. (1996). Morphology and phase behaviour of blends of syndiotactic and isotactic polypropylene: 2. Differential scanning calorimetry, light transmission measurements, and PVT measurements. Polymer (Polymer, 37(13), 2635–2640.), https://doi.org/10.1016/0032-3861(96)87622-1
  • Truong, L. T., Larsen, Å., Holme, B., Hansen, F. K., & Roots, J. (2011). Morphology of syndiotactic polypropylene/alumina nanocomposites. Polymer (Polymer), 52(4), 1116–1123. https://doi.org/10.1016/j.polymer.2011.01.014
  • Tsioptsias, C., Leontiadis, K., Tzimpilis, E., & Tsivintzelis, I. (2020). Polypropylene nanocomposite fibres: A review of current trends and new developments. Journal of Plastic Film & Sheeting, 37(3), 283–311. https://doi.org/10.1177/8756087920972146
  • Uehara, H., Yamazaki, Y., & Kanamoto, T. (1996). Tensile properties of highly syndiotactic polypropylene. Polymer (Polymer, 37(1), 57–64.),(96)81599-0. https://doi.org/10.1016/0032-3861
  • Valino, A. D., Dizon, J. R. C., Espera, A. H., Chen, Q., Messman, J., & Advincula, R. C. (2019). Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science, 98, 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
  • Van Belle, A., Demets, R., Mys, N., Van Kets, K., Dewulf, J., Van Geem, K., & Ragaert, K. (2020). Microstructural contributions of different polyolefins to the deformation mechanisms of their binary blends. Polymers, 12(5), 1171. https://doi.org/10.3390/polym12051171
  • Van Lierde, S. (2004). Latest medical applications of polypropylene. Medical Device Technology, 15(5), 33–34.
  • Vidakis, N., Kalderis, D., Petousis, M., Maravelakis, E., Mountakis, N., Bolanakis, N., & Papadakis, V. (2023). Biochar filler in MEX and VPP additive manufacturing: characterization and reinforcement effects in polylactic acid and standard grade resin matrices. Biochar, 5(1), 39. https://doi.org/10.1007/s42773-023-00238-6
  • Vidakis, N., Mangelis, P., Petousis, M., Mountakis, N., Papadakis, V., Moutsopoulou, A., & Tsikritzis, D. (2023). Mechanical reinforcement of ABS with optimized nano titanium nitride content for material extrusion 3D printing. Nanomaterials (Basel, Switzerland), 13(4), 669. https://doi.org/10.3390/nano13040669
  • Vidakis, N., Petousis, M., Grammatikos, S., Papadakis, V., Korlos, A., & Mountakis, N. (2022). High performance polycarbonate nanocomposites mechanically boosted with titanium carbide in material extrusion additive manufacturing. Nanomaterials (Basel, Switzerland), 12(7), 1068. https://doi.org/10.3390/nano12071068
  • Vidakis, N., Petousis, M., Michailidis, N., Kechagias, J. D., Mountakis, N., Argyros, A., & Grammatikos, S. (2022). High-performance medical-grade resin radically reinforced with cellulose nanofibers for 3D printing. Journal of the Mechanical Behavior of Biomedical Materials, 134(July), 105408. https://doi.org/10.1016/j.jmbbm.2022.105408
  • Vidakis, N., Petousis, M., Michailidis, N., Mountakis, N., Papadakis, V., Argyros, A., & Charou, C. (2023). Polyethylene glycol and polyvinylpyrrolidone reduction agents for medical grade polyamide 12/silver nanocomposites development for material extrusion 3D printing: Rheological, thermomechanical, and biocidal performance. Reactive and Functional Polymers, 190, 105623. https://doi.org/10.1016/j.reactfunctpolym.2023.105623
  • Vidakis, N., Petousis, M., Mountakis, N., Grammatikos, S., Papadakis, V., Kechagias, J. D., & Das, S. C. (2022). On the thermal and mechanical performance of polycarbonate/titanium nitride nanocomposites in material extrusion additive manufacturing. Composites Part C: Open Access, 8(June), 100291. https://doi.org/10.1016/j.jcomc.2022.100291
  • Vidakis, N., Petousis, M., Mountakis, N., Korlos, A., Papadakis, V., & Moutsopoulou, A. (2022). Trilateral multi-functional polyamide 12 nanocomposites with binary inclusions for medical grade material extrusion 3D printing: The effect of titanium nitride in mechanical reinforcement and copper/cuprous oxide as antibacterial agents. Journal of Functional Biomaterials, 13(3), 115. https://doi.org/10.3390/jfb13030115
  • Vidakis, N., Petousis, M., Mountakis, N., Maravelakis, E., Zaoutsos, S., & Kechagias, J. D. (2022). Mechanical response assessment of antibacterial PA12/TiO2 3D printed parts: Parameters optimization through artificial neural networks modeling. The International Journal, Advanced Manufacturing Technology, 121(1-2), 785–803. No https://doi.org/10.1007/s00170-022-09376-w
  • Vidakis, N., Petousis, M., Mountakis, N., Papadakis, V., & Moutsopoulou, A. (2023). Mechanical strength predictability of full factorial, Taguchi, and box Behnken designs: Optimization of thermal settings and cellulose nanofibers content in PA12 for MEX AM. Journal of the Mechanical Behavior of Biomedical Materials, 142(February), 105846. https://doi.org/10.1016/j.jmbbm.2023.105846
  • Vidakis, N., Petousis, M., Velidakis, E., Mountakis, N., Fischer-Griffiths, P. E., Grammatikos, S. A., & Tzounis, L. (2022). Mechanical reinforcement course of 3D Printed Polypropylene–antimony doped tin oxide nanocomposites versus filler loading. Advanced Composite Materials, 31(3), 235–256. https://doi.org/10.1080/09243046.2021.1973173
  • Wang, J., Kazemi, Y., Wang, S., Hamidinejad, M., Mahmud, M. B., Pötschke, P., & Park, C. B. (2020). Enhancing the electrical conductivity of PP/CNT nanocomposites through crystal-induced volume exclusion effect with a slow cooling rate. Composites Part B: Engineering, 183, 107663. https://doi.org/10.1016/j.compositesb.2019.107663
  • Wu, H. Z., Chou, T. C., Mishra, A., Anderson, D. R., Lampert, J. K., & Gujrathi, S. C. (1990). Characterization of titanium nitride thin films. Thin Solid Films, 191(1), 55–67.(90)90274-H. https://doi.org/10.1016/0040-6090
  • Xavier, J. R., & N, J. (2022). Effects of incorporation of silanized titanium nitride on the electrochemical and mechanical properties of polyurethane in aircraft coating. Journal of Polymer Research, 29(7), 305. https://doi.org/10.1007/s10965-022-03160-w
  • Yuan, H., Qi, F., Zhao, N., Wan, P., Zhang, B., Xiong, H., & Ouyang, X. (2020). Graphene oxide decorated with titanium nanoparticles to reinforce the anti-corrosion performance of epoxy coating. Coatings, 10(2), 129. https://doi.org/10.3390/coatings10020129
  • Zhang, H., Zhu, H., Xu, C., Li, Y., Liu, Q., Wang, S., & Yan, S. (2022). Effect of nanoparticle size on the mechanical properties of polymer nanocomposites. Polymer (Polymer), 252, 124944. https://doi.org/10.1016/j.polymer.2022.124944
  • Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials (Basel, Switzerland), 10(2), 387. https://doi.org/10.3390/nano10020387
  • Zimmerer, C., Matulaitiene, I., Niaura, G., Reuter, U., Janke, A., Boldt, R., & Steiner, G. (2019). Nondestructive characterization of the polycarbonate - octadecylamine interface by surface enhanced Raman spectroscopy. Polymer Testing, 73, 152–158. https://doi.org/10.1016/j.polymertesting.2018.11.023
  • Zou, H., Yi, C., Wang, L., Liu, H., & Xu, W. (2009). Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 97(3), 929–935. https://doi.org/10.1007/s10973-009-0121-5