1,134
Views
0
CrossRef citations to date
0
Altmetric
Pharmacology & Pharmaceutics

A review on neurodevelopmental abnormalities in congenital heart disease: focus on minimizing the deleterious effects on patients

, , &
Pages 172-180 | Received 20 Jul 2020, Accepted 02 Mar 2021, Published online: 17 Mar 2021

References

  • Afonso J, Reis F. 2012. Dexmedetomidine: current role in anesthesia and intensive care. Rev Bras Anestesiol. 62:118–133. doi:10.1016/S0034-7094(12)70110-1.
  • Andropoulos DB, Easley RB, Brady K, McKenzie ED, Heinle JS, Dickerson HA, Shekerdemian LS, Meador M, Eisenman C, Hunter JV, et al. 2013. Neurodevelopmental outcomes after regional cerebral perfusion with neuromonitoring for neonatal aortic arch reconstruction. Ann Thorac Surg. 95:648–655. doi:10.1016/j.athoracsur.2012.04.070.
  • Annink KV, Franz AR, Derks JB, Rüdiger M, Bel FV, Benders M. 2017. Allopurinol: old drug, new indication in neonates? Curr Pharm Design. 23:5935–5942. doi:10.2174/1381612823666170918123307.
  • Bhutta AT, Schmitz ML, Swearingen C, James LP, Wardbegnoche WL, Lindquist DM, Glasier CM, Tuzcu V, Prodhan P, Dyamenahalli U, et al. 2012. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: a pilot randomized, double-blind, placebo-controlled trial. Pediatr Crit Care Med. 13:328–337. doi:10.1097/PCC.0b013e31822f18f9.
  • Butler SC, Sadhwani A, Stopp C, Singer J, Wypij D, Dunbar-Masterson C, Ware J, Newburger JW. 2019. Neurodevelopmental assessment of infants with congenital heart disease in the early postoperative period. Congenit Heart Dis. 14:236–245. doi:10.1111/chd.12686.
  • Calderon J, Bellinger DC, Hartigan C, Lord A, Stopp C, Wypij D, Newburger JW. 2019. Improving neurodevelopmental outcomes in children with congenital heart disease: protocol for a randomised controlled trial of working memory training. BMJ Open. 9:e023304. doi:10.1136/bmjopen-2018-023304.
  • Chrysostomou C, Sanchez De Toledo J, Avolio T, Motoa MV, Berry D, Morell VO, Orr R, Munoz R. 2009. Dexmedetomidine use in a pediatric cardiac intensive care unit: can we use it in infants after cardiac surgery? Pediatr Crit Care Med. 10:654–660. doi:10.1097/PCC.0b013e3181a00b7a.
  • Clancy RR, McGaurn SA, Goin JE, Hirtz DG, Norwood WI, Gaynor JW, Jacobs ML, Wernovsky G, Mahle WT, Murphy JD, et al. 2001. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatr. 108:61–70. doi:10.1542/peds.108.1.61.
  • Cruickshank M, Henderson L, MacLennan G, Fraser C, Campbell M, Blackwood B, Gordon A, Brazzelli M. 2016. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess. 20:v–xx;1–117. doi:10.3310/hta20250.
  • De Asis-Cruz J, Donofrio MT, Vezina G, Limperopoulos C. 2018. Aberrant brain functional connectivity in newborns with congenital heart disease before cardiac surgery. Neuroimage Clin. 17:31–42. doi:10.1016/j.nicl.2017.09.020.
  • Desnous B, Lenoir M, Doussau A, Marandyuk B, Beaulieu-Genest L, Poirier N, Carmant L, Birca A, CINC multidisciplinary team. 2019. Epilepsy and seizures in children with congenital heart disease: a prospective study. Seizure. 64:50–53. doi:10.1016/j.seizure.2018.11.011.
  • Easson K, Rohlicek CV, Houde J-C, Gilbert G, Saint-Martin C, Fontes K, Majnemer A, Marelli A, Wintermark P, Descoteaux M, Brossard-Racine M. 2020. Quantification of apparent axon density and orientation dispersion in the white matter of youth born with congenital heart disease. Neuroimage. 205:116255. doi:10.1016/j.neuroimage.2019.116255.
  • Ehrler M, Latal B, Kretschmar O, von Rhein M, O’Gorman Tuura R. 2020. Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: a diffusion tensor imaging study. Neuroimage Clin. 25:102123. doi:10.1016/j.nicl.2019.102123.
  • Fischer HS, Reibel NJ, Buhrer C, Dame C. 2017. Prophylactic early erythropoietin for neuroprotection in preterm infants: a meta-analysis. Pediatr. 139. doi:10.1542/peds.2016-4317.
  • Fleck T, Schubert S, Ewert P, Stiller B, Nagdyman N, Berger F. 2015. Propofol effect on cerebral oxygenation in children with congenital heart disease. Pediatr Cardiol. 36:543–549. doi:10.1007/s00246-014-1047-7.
  • Fontes K, Rohlicek CV, Saint-Martin C, Gilbert G, Easson K, Majnemer A, Marelli A, Chakravarty MM, Brossard-Racine M. 2019. Hippocampal alterations and functional correlates in adolescents and young adults with congenital heart disease. Hum Brain Mapp. 40:3548–3560. doi:10.1002/hbm.24615.
  • Garcia RU, Peddy SB. 2018. Heart disease in children. Prim Care. 45:143–154. doi:10.1016/j.pop.2017.10.005.
  • Gong J, Zhang R, Shen L, Xie Y, Li X. 2019. The brain protective effect of dexmedetomidine during surgery for paediatric patients with congenital heart disease. J Int Med Res. 47:1677–1684. doi:10.1177/0300060518821272.
  • Guinter JR, Kristeller JL. 2010. Prolonged infusions of dexmedetomidine in critically ill patients. Am J Health Syst Pharm. 67:1246–1253. doi:10.2146/ajhp090300.
  • Gupta P, Whiteside W, Sabati A, Tesoro TM, Gossett JM, Tobias JD, Roth SJ. 2012. Safety and efficacy of prolonged dexmedetomidine use in critically ill children with heart disease*. Pediatr Crit Care Med. 13:660–666. doi:10.1097/PCC.0b013e318253c7f1.
  • Hartnett ME. 2014. Vascular endothelial growth factor antagonist therapy for retinopathy of prematurity. Clin Perinatol. 41:925–943. doi:10.1016/j.clp.2014.08.011.
  • Holst LM, Serrano F, Shekerdemian L, Ravn HB, Guffey D, Ghanayem NS, Monteiro S. 2019. Impact of feeding mode on neurodevelopmental outcome in infants and children with congenital heart disease. Congenit Heart Dis. 14:1207–1213. doi:10.1111/chd.12827.
  • Huang J, Gou B, Rong F, Wang W. 2020. Dexmedetomidine improves neurodevelopment and cognitive impairment in infants with congenital heart disease. Per Med. 17:33–41. doi:10.2217/pme-2019-0003.
  • Hudetz JA, Iqbal Z, Gandhi SD, Patterson KM, Byrne AJ, Hudetz AG, Pagel PS, Warltier DC. 2009. Ketamine attenuates post-operative cognitive dysfunction after cardiac surgery. Acta Anaesth Scand. 53:864–872. doi:10.1111/j.1399-6576.2009.01978.x.
  • Jadcherla SR, Khot T, Moore R, Malkar M, Gulati IK, Slaughter JL. 2017. Feeding methods at discharge predict long-term feeding and neurodevelopmental outcomes in preterm infants referred for gastrostomy evaluation. J. Pediatr. 181:125–130.e1. doi:10.1016/j.jpeds.2016.10.065.
  • Jakab A, Meuwly E, Feldmann M, Rhein MV, Kottke R, O’Gorman Tuura R, Latal B, Knirsch W, Research Group Heart and Brain. 2019. Left temporal plane growth predicts language development in newborns with congenital heart disease. Brain. 142:1270–1281. doi:10.1093/brain/awz067.
  • Kelly CJ, Arulkumaran S, Tristão Pereira C, Cordero-Grande L, Hughes EJ, Teixeira RPAG, Steinweg JK, Victor S, Pushparajah K, Hajnal JV, et al. 2019. Neuroimaging findings in newborns with congenital heart disease prior to surgery: an observational study. Arch Dis Child. 104:1042–1048. doi:10.1136/archdischild-2018-314822.
  • Kiski D, Malec E, Schmidt C. 2019. Use of dexmedetomidine in pediatric cardiac anesthesia. Curr Opin Anaesthesiol. 32:334–342. doi:10.1097/ACO.0000000000000731.
  • Lakič N, Mrak M, Šušteršič M, Rakovec P, Bunc M. 2016. Perioperative erythropoietin protects the CNS against ischemic lesions in patients after open heart surgery. Wiener klinische Wochenschrift. 128:875–881. doi:10.1007/s00508-016-1063-0.
  • Lakič N, Šurlan K, Jerin A, Meglič B, Curk N, Bunc M. 2010. Importance of erythropoietin in brain protection after cardiac surgery: a pilot study. Heart Surg Forum. 13:E185–E189. doi:10.1532/HSF98.20091150.
  • Lam F, Bhutta AT, Tobias JD, Gossett JM, Morales L, Gupta P. 2012. Hemodynamic effects of dexmedetomidine in critically ill neonates and infants with heart disease. Pediatr Cardiol. 33:1069–1077. doi:10.1007/s00246-012-0227-6.
  • Leijser LM, Chau V, Seed M, Poskitt KJ, Synnes A, Blaser S, Au-Young SH, Hickey EJ, Campbell A, McQuillen PS, Miller SP. 2019. Anticoagulation therapy and the risk of perioperative brain injury in neonates with congenital heart disease. J Thorac Cardiovasc Surg. 157:2406–2413.e2. doi:10.1016/j.jtcvs.2019.02.029.
  • Llurba E, Sanchez O, Ferrer Q, Nicolaides KH, Ruiz A, Dominguez C, Sanchez-de-Toledo J, Garcia-Garcia B, Soro G, Arevalo S, et al. 2014. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur Heart J. 35:701–707. doi:10.1093/eurheartj/eht389.
  • Mandalenakis Z, Rosengren A, Lappas G, Eriksson P, Hansson P-O, Dellborg M. 2016. Ischemic stroke in children and young adults with congenital heart disease. J Am Heart Assoc. 5. doi:10.1161/JAHA.115.003071.
  • Mebius MJ, Kooi EMW, Bilardo CM, Bos AF. 2017. Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review. Pediatr. 140. doi:10.1542/peds.2016-4055.
  • Morton PD, Ishibashi N, Jonas RA. 2017. Neurodevelopmental abnormalities and congenital heart disease: insights into altered brain maturation. Circ Res. 120(6):960–977. doi:10.1161/CIRCRESAHA.116.309048.
  • Nagels W, Demeyere R, Van Hemelrijck J, Vandenbussche E, Gijbels K, Vandermeersch E. 2004. Evaluation of the neuroprotective effects of S(+)-ketamine during open-heart surgery. Anesth Analg. 98:1595–1603. doi:10.1213/01.ane.0000117227.00820.0c.
  • Nattel SN, Adrianzen L, Kessler EC, Andelfinger G, Dehaes M, Côté-Corriveau G, Trelles MP. 2017. Congenital heart disease and neurodevelopment: clinical manifestations, genetics, mechanisms, and implications. Can J Cardiol. 33:1543–1555. doi:10.1016/j.cjca.2017.09.020.
  • Peyvandi S, Latal B, Miller SP, McQuillen PS. 2019. The neonatal brain in critical congenital heart disease: insights and future directions. Neuroimage. 185:776–782. doi:10.1016/j.neuroimage.2018.05.045.
  • Phan H, Nahata MC. 2008. Clinical uses of dexmedetomidine in pediatric patients. Paediatr Drugs. 10:49–69. doi:10.2165/00148581-200810010-00006.
  • Pu B, Xue Y, Wang Q, Hua C, Li X. 2015. Dextromethorphan provides neuroprotection via anti-inflammatory and anti-excitotoxicity effects in the cortex following traumatic brain injury. Mol Med Rep. 12:3704–3710. doi:10.3892/mmr.2015.3830.
  • Rollins CK, Asaro LA, Akhondi-Asl A, Kussman BD, Rivkin MJ, Bellinger DC, Warfield SK, Wypij D, Newburger JW, Soul JS. 2017. White matter volume predicts language development in congenital heart disease. J Pediatr. 181:42–48.e2. doi:10.1016/j.jpeds.2016.09.070.
  • Rollins CK, Watson CG, Asaro LA, Wypij D, Vajapeyam S, Bellinger DC, DeMaso DR, Robertson RL, Newburger JW, Rivkin MJ. 2014. White matter microstructure and cognition in adolescents with congenital heart disease. J Pediatr. 165:936–944.e1–2. doi:10.1016/j.jpeds.2014.07.028.
  • Sánchez O, Ruiz-Romero A, Domínguez C, Ferrer Q, Ribera I, Rodríguez-Sureda V, Alijotas J, Arévalo S, Carreras E, Cabero L, Llurba E. 2018. Brain angiogenic gene expression in fetuses with congenital heart disease. Ultrasound Obstet Gynecol. 52:734–738. doi:10.1002/uog.18977.
  • Schmitt B, Bauersfeld U, Fanconi S, Wohlrab G, Huisman TA, Bandtlow C, Baumann P, Superti-Furga A, Martin E, Arbenz U, et al. 1997. The effect of the N-methyl-D-aspartate receptor antagonist dextromethorphan on perioperative brain injury in children undergoing cardiac surgery with cardiopulmonary bypass: results of a pilot study. Neuropediatrics. 28:191–197. doi:10.1055/s-2007-973699.
  • Schwartz LI, Twite M, Gulack B, Hill K, Kim S, Vener DF. 2016. The perioperative use of dexmedetomidine in pediatric patients with congenital heart disease: an analysis from the congenital cardiac anesthesia society-society of thoracic surgeons congenital heart disease database. Anesth Analg. 123:715–721. doi:10.1213/ANE.0000000000001314.
  • Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse-Wortmann L, Jaeggi E, McCrindle BW, Kingdom J, et al. 2015. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 131:1313–1323. doi:10.1161/CIRCULATIONAHA.114.013051.
  • Tassinari S, Martínez-Vernaza S, Erazo-Morera N, Pinzón-Arciniegas MC, Gracia G, Zarante I. 2018. Epidemiology of congenital heart diseases in Bogotá, Colombia, from 2001 to 2014: improved surveillance or increased prevalence? Biomedica. 38:148–155. doi:10.7705/biomedica.v38i0.3381.
  • Vedovelli L, Cogo P, Cainelli E, Suppiej A, Padalino M, Tassini M, Simonato M, Stellin G, Carnielli VP, Buonocore G, Longini M. 2019. Pre-surgery urine metabolomics may predict late neurodevelopmental outcome in children with congenital heart disease. Heliyon. 5:e02547. doi:10.1016/j.heliyon.2019.e02547.
  • von Rhein M, Buchmann A, Hagmann C, Huber R, Klaver P, Knirsch W, Latal B. 2014. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain. 137:268–276. doi:10.1093/brain/awt322.
  • Wang R, Zhang Z, Kumar M, Xu G, Zhang M. 2019. Neuroprotective potential of ketamine prevents developing brain structure impairment and alteration of neurocognitive function induced via isoflurane through the PI3K/AKT/GSK-3beta pathway. Drug Des. 13:501–512. doi:10.2147/DDDT.S188636.
  • White BR, Rogers LS, Kirschen MP. 2019. Recent advances in our understanding of neurodevelopmental outcomes in congenital heart disease. Curr. Opin. Pediatr. 31:783–788. doi:10.1097/MOP.0000000000000829.
  • Wintermark P, Lechpammer M, Kosaras B, Jensen FE, Warfield SK. 2015. Brain perfusion is increased at term in the white matter of very preterm newborns and newborns with congenital heart disease: does this reflect activated angiogenesis? Neuropediatrics. 46:344–351. doi:10.1055/s-0035-1563533.
  • Yıldız EP, Ekici B, Tatlı B. 2017. Neonatal hypoxic ischemic encephalopathy: an update on disease pathogenesis and treatment. Expert Rev Neurother. 17:449–459. doi:10.1080/14737175.2017.1259567.