2,882
Views
14
CrossRef citations to date
0
Altmetric
Agriculture

Editing sterol side chain reductase 2 gene (StSSR2) via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato

, , , , &
Pages 401-413 | Received 22 Feb 2021, Accepted 28 Apr 2021, Published online: 12 May 2021

References

  • Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P. 2017. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 36:117–128.
  • Andersson M, Turesson H, Olsson N, Fält AS, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P. 2018. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant. 164:378–384.
  • Arnqvist L, Dutta PC, Jonsson L, Sitbon F. 2003. Reduction of cholesterol and glycoalkaloid levels in transgenic potato plants by overexpression of a type 1 sterol methyltransferase cDNA. Plant Physiol. 131:1792–1799.
  • Austin S, Lojkowska E, Ehlenfeldt MK, Kelman A, Helgeson JP. 1988. Fertile interspecific somatic hybrids of solanum: a novel source of resistance to Erwinia soft Rot. Phytopathology. 78:1216–1220.
  • Bejarano L, Mignolet E, Devaux A, Espinola N, Carrasco E, Larondelle Y. 2000. Glycoalkaloids in potato tubers: the effect of variety and drought stress on the α-solanine and α-chaconine contents of potatoes. J Sci Food Agric. 80:2096–2100.
  • Bergenstråhle A, Borga P, Jonsson MV. 1996. Sterol composition and synthesis in potato tuber discs in relation to glycoalkaloid synthesis. Phytochemistry. 41:155–161.
  • Bergenstråhle A, Tillberg E, Jonsson L. 1992. Regulation of glycoalkaloid accumulation in potato tuber discs. J Plant Physiol. 140:269–275.
  • Butler NM, Atkins PA, Voytas DF, Douches DS. 2015. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas system. Plos One. 10:e0144591.
  • Butler NM, Baltes NJ, Voytas DF, Douches DS. 2016. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci. 7:1045.
  • Cárdenas PD, Sonawane PD, Pollier J, Vanden Bossche R, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S, et al. 2016. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat Commun. 7:10654.
  • Choi D, Bostock RM, Avdiushko S, Hildebrand DF. 1994. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc Natl Acad Sci USA. 91:2329–2333.
  • Dale MFB, GriYths DW, Bain H, Todd D. 1993. Glycoalkaloid increase in Solarium tuberosum on exposure to light. Ann Appl Biol. 123:411–418.
  • Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR. 2000. Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell. 12:853–870.
  • Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D. 2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol. 217:90–97.
  • Fauser F, Schiml S, Puchta H. 2014. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79:348–359.
  • Fewell AM, Roddick JG. 1997. Potato glycoalkaloid impairment of fungal development. Mycol Res. 101:597–603.
  • Griffiths DW, Dale MFB. 2001. Effect of light exposure on the glycoalkaloid content of Solanum phureja tubers. J Agric Food Chem. 49:5223–5227.
  • Hajslova J, Schulzova V, Slanina P, Janne K, Hellenas KE, Andersson C. 2005. Quality of organically and conventionally grown potatoes: four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit Contam. 22:514–534.
  • Hameed A, Zaidi SS, Shakir S, Mansoor S. 2018. Applications of New Breeding Technologies for Potato Improvement. Front Plant Sci. 9:925.
  • Heftmann E. 1983. Biogenesis of steroids in solanaceae. Phytochemistry. 22:1843–1860.
  • Itkin M, Heinig U, Tzfadia O, Bhide AJ, Shinde B, Cardenas PD, Bocobza SE, Unger T, Malitsky S, Finkers R, et al. 2013. Biosynthesis of antinutritional alkaloids in solanaceous crops is mediated by clustered genes. Science. 341:175–179.
  • Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B. 2017. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops. Front Plant Sci. 8:1635.
  • Kozukue N, Mizuno S. 1990. Effects of light exposure and storage temperature on greening and glycoalkaloid content in potato tubers. J Jpn Soc Hortic Sci. 59:673–677.
  • Krits P, Fogelman E, Ginzberg I. 2007. Potato steroidal glycoalkaloid levels and the expression of key isoprenoid metabolic genes. Planta. 227:143–150.
  • Kumar A, Fogelman E, Weissberg M, Tanami Z, Veilleux RE, Ginzberg I. 2017. Lanosterol synthase-like is involved with differential accumulation of steroidal glycoalkaloids in potato. Planta. 246:1189–1202.
  • Kusano H, Ohnuma M, Mutsuro-Aoki H, Asahi T, Ichinosawa D, Onodera H, Asano K, Noda T, Horie T, Fukumoto K, et al. 2018. Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Sci Rep. 8:13753.
  • Lafta AM, Lorenzen JH. 2000. Influence of high temperature and reduced irradiance on glycoalkaloid levels in potato leaves. J Am Soc Hortic Sci. 125:563–566.
  • Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL. 2017. CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants. Mol Plant. 10:530–532.
  • Liu CX, Gui HP, Wen Q, Liu YB, Gao Y, Zhang XJ, Cui RJ, Xu JP. 2020. CRISPR/cas9 genome editing system optimization in tomato. Mol Plant Breed. 18:6716–6724.
  • Long L, Guo DD, Gao W, Yang WW, Hou LP, Ma XN, Miao YC, Botella JR, Song CP. 2018. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods. 14:85.
  • McCue KF, Allen PV, Shepherd LVT, Blake A, Maccree MM, Rockhold DR, Novy RG, Stewart D, Davies HV, Belknap WR. 2007. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry. 68:327–334.
  • McCue KF, Shepherd LVT, Allen PV, Maccree MM, Rockhold DR, Corsini DL, Davies HV, Belknap WR. 2005. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci. 168:267–273.
  • Moehs CP, Allen PV, Friedman M, Belknap WR. 1997. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J. 11:227–236.
  • Muthoni J, Kabira J, Shimelis H, Melis R. 2015. Tetrasomic inheritance in cultivated potato and implications in conventional breeding. Aust J Crop Sci. 9:185–190.
  • Nahar N, Westerberg E, Arif U, Huchelmann A, Guasca AO, Beste L, Dalman K, Dutta PC, Jonsson L, Sitbon F. 2017. Transcript profiling of two potato cultivars during glycoalkaloid-inducing treatments shows differential expression of genes in sterol and glycoalkaloid metabolism. Sci Rep. 7:43268.
  • Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T, Mizutani M. 2018. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem. 131:70–77.
  • Nes WD. 2011. Biosynthesis of cholesterol and other sterols. Chem Rev. 111:6423–6451.
  • Ohyama K, Okawa A, Moriuchi Y, Fujimoto Y. 2013. Biosynthesis of steroidal alkaloids in Solanaceae plants: Involvement of an aldehyde intermediate during C-26 amination. Phytochemistry. 89:26–31.
  • Pan C, Ye L, Qin L, Liu X, He Y, Wang J, Chen L, Lu G. 2016. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep. 6:24765.
  • Pehu E, Gibson RW, Jones MGK, Karp A. 1990. Studies on the genetic basis of resistance to potato leaf roll virus, potato virus Y and potato virus X in Solanum brevidens using somatic hybrids of Solanum brevidens and Solanum tuberosum. Plant Sci. 69:95–101.
  • Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J. 15:1509–1519.
  • Percival G, Dixon G, Sword A. 1994. Glycoalkaloid concentration of potato tubers following continuous illumination. J Sci Food Agric. 66:139–144.
  • Percival GC, Karim MS, Dixon GR. 1998. Influence of light-enhanced glycoalkaloids on resistance of potato tubers to Fusarium sulphureum and Fusarium solani var. coeruleum. Plant Pathol. 47:665–670.
  • Petersson EV, Nahar N, Dahlin P, Broberg A, Tröger R, Dutta PC, Jonsson L, Sitbon F. 2013. Conversion of exogenous cholesterol into glycoalkaloids in potato shoots, using two methods for sterol solubilisation. PLoS One. 8:e82955.
  • Rahier A. 2011. Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids. 76:340–352.
  • Rokka VM, Xu YS, Kankila J, Kuusela A, Pulli S, Pehu E. 1994. Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids. Euphytica. 80:207.
  • Sanford LL, Deahl KL, Sinden SL, Ladd TL. 1992. Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance. Am Potato J. 69:693–703.
  • Sanford LL, Kobayashi RS, Deahl KL, Sinden SL. 1997. Diploid and tetraploid Solanum chacoense genotypes that synthesize leptine glycoalkaloids and deter feeding by Colorado potato beetle. Am Potato J. 74:15–21.
  • Sawai S, Ohyama K, Yasumoto S, Seki H, Sakuma T, Yamamoto T, Takebayashi Y, Kojima M, Sakakibara H, Aoki T, et al. 2014. Sterol side chain reductase 2 is a Key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato . Plant Cell. 26:3763–3774.
  • Sepelev I, Galoburda R. 2015. Industrial potato peel waste application in food production: a review. Res Rural Dev. 1:130–136.
  • Smith DB, Roddick JG, Jones JL. 1996. Potato glycoalkaloids: some unanswered questions. Trends Food Sci Technol. 7:126–131.
  • Stearns LD, Petry TA, Krause MA. 1994. Potential food and nonfood utilization of potatoes and related byproducts in North Dakota. Agricultural Economics Report Number 322. p. 2–6.
  • Suzuki M, Muranaka T. 2007. Molecular genetics of plant sterol backbone synthesis. Lipids. 42:47–54.
  • Thagun C, Imanishi S, Kudo T, Nakabayashi R, Ohyama K, Mori T, Kawamoto K, Nakamura Y, Katayama M, Nonaka S, et al. 2016. Jasmonate-responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato. Plant Cell Physiol. 57:961–975.
  • Valkonen JPT, Keskitalo M, Vasara T, Pietila L. 1996. Potato glycoalkaloids: a burden or a blessing? Crit Rev Plant Sci. 15:1–20.
  • Veillet F, Chauvin L, Kermarrec MP, Sevestre F, Merrer M, Terret Z, Szydlowski N, Devaux P, Gallois JL, Chauvin JE. 2019a. The Solanum tuberosum GBSSI gene: a target for assessing gene and base editing in tetraploid potato. Plant Cell Rep. 38:1065–1080.
  • Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon-Debast A, Chauvin JE, Nogué F, Mazier M. 2019b. Transgene-Free Genome Editing in Tomato and Potato Plants Using Agrobacterium-Mediated Delivery of a CRISPR/Cas9 Cytidine Base Editor. Int J Mol Sci. 20:402.
  • Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X. 2015. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep. 34:1473–1476.
  • Xie K, Minkenberg B, Yang YY. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA. 112:3570–3575.
  • Yasumoto S, Sawai S, Lee HJ, Mizutani M, Saito K, Umemoto N, Muranaka T. 2020. Targeted genome editing in tetraploid potato through transient TALEN expression by Agrobacterium infection. Plant Biotechnol. 37:205–211.
  • Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C. 2017. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot. 68:1265–1281.