1,197
Views
1
CrossRef citations to date
0
Altmetric
Plant Biology

New insights into the evolutionary characteristic between the New World and Old World Lupinus species using complete chloroplast genomes

, , , , &
Pages 414-427 | Received 28 Aug 2020, Accepted 02 May 2021, Published online: 12 May 2021

References

  • Ainouche A, Bayer RJ. 1999. Phylogenetic relationships in Lupinus(Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot. 86:590–607. DOI:10.2307/2656820
  • Ainouche A, Bayer RJ, Misset MT. 2004. Molecular phylogeny, diversification and character evolution in Lupinus (Fabaceae) with special attention to Mediterranean and African lupines. Plant Syst Evol. 246:211–222. DOI:10.1007/s00606-004-0149-8
  • Alikhan N-F, Petty NK, Zakour NLB, Beatson SA. 2011. BLAST ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12:402. DOI:10.1186/1471-2164-12-402
  • Ayele TB, Gailing O, Umer M, Finkeldey R. 2009. Chloroplast DNA haplotype diversity and postglacial recolonization of Hagenia abyssinica (Bruce) JF Gmel. in Ethiopia. Plant Syst Evol. 280:175–185. DOI:10.1007/s00606-009-0177-5
  • Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573–580. DOI:10.1093/nar/27.2.573
  • Bruneau A, Doyle JJ, Herendeen P, Hughes C, Kenicer G. 2013. Legume phylogeny and classification in the 21st century: progress, prospects and lessons for other species-rich clades. Taxon. 62:217–248. DOI:10.12705/622.8
  • Bull LN, Pabón-Peña CR, Freimer NB. 1999. Compound microsatellite repeats: practical and Theoretical features. Genome Res. 9:830–838. DOI:10.1101/gr.9.9.830
  • Bupp G, Ricono A, Peterson CL, Pruett CL. 2017. Conservation implications of small population size and habitat fragmentation in an endangered lupine. Conservation Genetics. 18:77–88. DOI:10.1007/s10592-016-0883-9
  • Cardoso D, de Queiroz LP, Pennington RT, de Lima HC, Fonty E, Wojciechowski MF, Lavin M. 2012. Revisiting the phylogeny of papilionoid legumes: new insights from comprehensively sampled early-branching lineages. Am J Bot. 99:1991–2013. DOI:10.3732/ajb.1200380
  • Cardoso D, Pennington RT, de Queiroz LP, Boatwright JS, Van Wyk BE, Wojciechowski MF, Lavin M. 2013. Reconstructing the deep-branching relationships of the papilionoid legumes. S Afr J Bot. 89:58–75. DOI:10.1016/j.sajb.2013.05.001
  • Cristofolini G. 1989. A serological contribution to the systematics of the genus Lupinus (Fabaceae). Plant Syst Evol. 166:265–278. DOI:10.1007/bf00935955
  • Cronk Q, Ojeda I, Pennington RT. 2006. Legume comparative genomics: progress in phylogenetics and phylogenomics. Curr Opin Plant Biol. 9:99–103. DOI:10.1016/j.pbi.2006.01.011
  • Cummings MP, King LM, Kellogg EA. 1994. Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae). Molecular Biology Evolution & Development. 11:1–8.
  • Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14:1394–1403. DOI:10.1101/gr.2289704
  • Dong W, Xu C, Li C, Sun J, Zuo Y, Shi S, Cheng T, Guo J, Zhou S. 2015. Ycf1, the most promising plastid DNA barcode of land plants. Sci Rep. 5:8348–8353. DOI:10.1038/srep08348
  • Dugas DV, Hernandez D, Koenen EJM, Schwarz E, Straub S, Hughes CE, Jansen RK, Nageswara-Rao M, Staats M, Trujillo JT. 2015. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP. Sci Rep. 5:16958. DOI:10.1038/srep16958
  • Eastwood RJ, Hughes CE. 2008. Origins of domestication of lupinus mutabilis in the Andes. In Proceedings of the 12th International Lupin Conference, Fremantle,Western Australia, 14–18 Sept; pp. 373–379.
  • Edwards TJ. 2007. Legumes of the world. S Afr J Bot. 73:272–273. DOI:10.1016/j.sajb.2007.02.187
  • Georg M, Perlman PS, Lambowitz AM. 1993. Evolutionary relationships among group II intron-encoded proteins and identification of a conserved domain that may be related to maturase function. Nucleic Acids Res. 21:4991–4997. DOI:10.1093/nar/21.22.4991
  • Gepts P. 2005. Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol. 137:1228–1235. DOI:10.1104/pp.105.060871
  • Gladstones J. 1984. Present situation and potential of Mediterranean/African lupins for crop rotation. In Proceedings of the 3rd International Lupin Conference, La Rochelle, France, 4–8 June; pp. 18–37.
  • Gupta S, Buirchell BJ, Cowling WAJPB. 1996. Interspecific reproductive barriers and genomic similarity among the rough-seeded Lupinus species. Plant Breed. 115:123–127. DOI:10.1111/j.1439-0523.1996.tb00886.x
  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y. 1989. The complete sequence of the rice (oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. MGG Molecular & General Genetics. 217:185–194. DOI:10.1007/bf02464880
  • Huang L-S, Sun Y-Q, Jin Y-Q, Gao Q. 2018. Development of high transferability cpSSR markers for individual identification and genetic investigation in cupressaceae species. Ecol Evol. 8:4967–4977. DOI:10.1002/ece3.4053
  • Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E, Yahubyan G, Baev V. 2017. Chloroplast genome analysis of resurrection tertiary relict haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci. 8:15. DOI:10.3389/fpls.2017.00204
  • Jeon J-H, Kim S-C. 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes (Basel). 10:23.
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. Modelfinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14:587–589. DOI:10.1038/nmeth.4285
  • Käss E, Wink M. 1997. Molecular phylogeny and phylogeography of Lupinus (Leguminosae) inferred from nucleotide sequences of therbcL gene and ITS 1 + 2 regions of rDNA. Plant Syst Evol. 208:139–167. DOI:10.1007/BF00985439
  • Katoh K, Standley DM. 2013. MAFFT multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol Biol Evol. 30:772–780. DOI:10.1093/molbev/mst010
  • Kelchner SA. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard. 87:482–498. DOI:10.2307/2666142
  • Keller J, Rousseau-Gueutin M, Martin GE, Morice J, Boutte J, Coissac E, Ourari M, Ainouche M, Salmon A, Cabello-Hurtado F, et al. 2017. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus. DNA Res. 24:343–358. DOI:10.1093/dnares/dsx006
  • Kikuchi S, Bedard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Mai T, Ide T, Nakai M. 2013. Uncovering the protein translocon at the chloroplast inner envelope membrane. Science. 339:571–574. DOI:10.1126/science.1229262
  • Kim M, Christopher DA, Mullet JE. 1993. Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol. 22:447–463. DOI:10.1007/BF00015975
  • Kimura M. 1989. The neutral theory of molecular evolution and the world view of the neutralists. Genome. 31:24–31. DOI:10.1139/g89-009
  • Kode V, Mudd EA, Iamtham S, Day A. 2005. The tobacco plastid accD gene is essential and is required for leaf development. Plant J. 44:237–244. DOI:10.1111/j.1365-313X.2005.02533.x
  • Kuang DY, Wu H, Wang YL, Gao LM, Lu L. 2011. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): Implication for DNA barcoding and population genetics. Genome. 54:663–673. DOI:10.1139/g11-026
  • Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 33:1870–1874. DOI:10.1093/molbev/msw054
  • Kurtz S, Schleiermacher C. 1999. REPuter: fast computation of maximal repeats in complete genomes. Bioinformatics. 15:426–427. DOI:10.1093/bioinformatics/15.5.426
  • Li X, Zuo Y, Zhu X, Liao S, Ma J. 2019. Complete chloroplast genomes and comparative analysis of sequences evolution among seven Aristolochia (Aristolochiaceae) medicinal species. Int J Mol Sci. 20:1045–1068.
  • Liu LX, Li R, Worth JRP, Li X, Li P, Cameron KM, Fu CX. 2017. The complete chloroplast genome of Chinese bayberry (Morella rubra, Myricaceae): implications for understanding the evolution of fagales. Front Plant Sci. 8:968. DOI:10.3389/fpls.2017.00968
  • Maciel HS, Schifino-Wittmann MT. 2002. First chromosome number determinations in south-eastern South American species of Lupinus L. (Leguminosae). Bot J Linn Soc. 139:395–400. DOI:10.1046/j.1095-8339.2002.00071.x
  • Mehmood F, Abdullah UZ, Bao Y, Poczai P, Mirza B. 2020b. Comparative plastomics of Ashwagandha (Withania, Solanaceae) and identification of mutational hotspots for barcoding medicinal plants. Plants-Basel. 9. DOI:10.3390/plants9060752
  • Mehmood F, Abdullah, Shahzadi I, Ahmed I, Waheed MT, Mirza B. 2020a. Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. Genomics. 112:1522–1530. DOI:10.1016/j.ygeno.2019.08.024
  • Mehmood F, Abdullah UZ, Shahzadi I, Ahmed I, Waheed MT, Poczai P, Mirza B. 2020c. Plastid genomics of Nicotiana (Solanaceae): insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). Peerj. 8:30. DOI:10.7717/peerj.9552
  • Naydenov KD, Naydenov MK, Alexandrov A, Vasilevski K, Gyuleva V, Matevski V, Nikolic B, Goudiaby V, Bogunic F, Paitaridou D, et al. 2016. Ancient split of major genetic lineages of european black pine: evidence from chloroplast DNA. Tree Genetics & Genomes. 12:61–68. DOI:10.1007/s11295-016-1022-y
  • Neuhaus H, Link G. 1987. The chloroplast tRNALys(UUU) gene from mustard (sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet. 11:251–257. DOI:10.1007/BF00355398
  • Njuguna AW, Li Z-Z, Saina JK, Munywoki JM, Gichira AW, Gituru RW, Wang Q-F, Chen J-M. 2019. Comparative analyses of the complete chloroplast genomes of nymphoides and menyanthes species (menyanthaceae). Aquat Bot. 156:73–81. DOI:10.1016/j.aquabot.2019.05.001
  • Planchuelo-Ravelo AM. 1984. Taxonomic studies of Lupinus in South America. In Proceedings of the 3rd International Lupin Conference, La Rochelle, France, 4–8 June; pp. 39–53.
  • Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15:12. DOI:10.1186/s13007-019-0435-7
  • Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 34:3299–3302. DOI:10.1093/molbev/msx248
  • Schwarz EN, Ruhlman TA, Weng ML, Khiyami MA, Sabir JSM, Hajarah NH, Alharbi NS, Rabah SO, Jansen RK. 2017. Plastome-Wide nucleotide substitution rates reveal accelerated rates in Papilionoideae and correlations with genome features across legume subfamilies. J Mol Evol. 84:187–203. DOI:10.1007/s00239-017-9792-x
  • Silva SR, Diaz YC, Penha HA, Pinheiro DG, Fernandes CC, Miranda VF, Michael TP, Varani AM. 2016. The chloroplast genome of utricularia reniformis sheds light on the evolution of the ndh gene complex of terrestrial carnivorous plants from the lentibulariaceae family. PLoS One. 11:e0165176. DOI:10.1371/journal.pone.0165176
  • Tang J, Xia HA, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, et al. 2004. A comparison of rice chloroplast genomes. Plant Physiol. 135:412–420. DOI:10.1104/pp.103.031245
  • Thiel T, Michalek W, Varshney RK, Graner A. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 106:411–422. DOI:10.1007/s00122-002-1031-0
  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA. 91:9794–9798. DOI:10.1073/pnas.91.21.9794
  • Wang YH, Susann W, Hong W, Jin JJ, Chen SY, Zhang SD, Li DZ, Yi TSJ. 2018. Plastid Genome evolution in the early-diverging legume subfamily cercidoideae (fabaceae). Front Plant Sci. 9:138–149. DOI:10.3389/fpls.2018.00138
  • Williams CA, Demissie A, Harborne JB. 1983. Flavonoids as taxonomic markers in old world Lupinus species. Biochem Syst Ecol. 11:221–231. DOI:10.1016/0305-1978(83)90058-3
  • Wolko B, Clements JC, Naganowska B, Nelson MN, Yang H. 2011. Lupinus. In: Kole C., editor. Wild crop relatives: genomic and breeding resources, Legume crops and forages. Germany: Springer Berlin Heidelberg; p. 153–206.
  • Wolko B, Weeden NF. 1990. Isozyme number as an indicator of phylogeny in Lupinus. Genetica Polonica. 31:179–187.
  • Wunderlin R. 1982. The leguminosae: A source book of characteristics, uses, and nodulation. Econ Bot. 36:224–224. DOI:10.1007/BF02858721
  • Xiao Z, Tao Z, Nazish K, Zhao Y, Bai G, Zhao G. 2017. Completion of eight gynostemma BL. (Cucurbitaceae) chloroplast genomes: characterization, comparative analysis, and phylogenetic relationships. Front Plant Sci. 8:1583. DOI:10.3389/fpls.2017.01583
  • Xu Z, Zhao Y, Dong M, Dong C, Xue Y, Yang G. 2019. Characterization and phylogenetic analysis of the chloroplast genome of Lupinus westianus, a endemic species to Florida, United States. Conserv Genet Resour. 11:51–54. DOI:10.1007/s12686-017-0965-0
  • Yan X, Cui ming L, Shu fang W, Ning ning W, Yong W. 2002. Chloroplast genome and the regulation of chloroplast-encoded gene expression. J Plant Physiol. 38:264–269. DOI:10.13592/j.cnki.ppj.2002.03.030
  • Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 24:1586–1591. DOI:10.1093/molbev/msm088
  • Yi Z, Cui YL, Zhang XL, Yu QB, Xi W, Yuan XB, Qin XM, He XF, Chao H, Yang ZN. 2018. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development. Sci Rep. 8:11929–11941. DOI:10.1038/s41598-018-30166-6
  • Yin K, Zhang Y, Li Y, Du FK. 2018. Different natural selection pressures on the atpF gene in evergreen sclerophyllous and deciduous Oak species: evidence from comparative analysis of the complete chloroplast genome of Quercus aquifolioides with other Oak species. Int J Mol Sci. 19. DOI:10.3390/ijms19041042
  • Yuka M, Ken-Ichi T, Junya M, Ikuo N, Yukio N, Yukiko S. 2002. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco. Plant Cell Physiology. 43:1518–1525. DOI:10.1093/pcp/pcf172
  • Zhang X, Zhou T, Yang J, Sun J, Ju M, Zhao Y, Zhao G. 2018. Comparative analyses of chloroplast genomes of cucurbitaceae species: lights into selective pressures and phylogenetic relationships. Molecules. 23. DOI:10.3390/molecules-23092165
  • Zheng XM, Wang J, Li F, Sha L, Pang H, Lan Q, Jing L, Yan S, Qiao W, Zhang LJSR. 2017. Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. Sci Rep. 7:1555–1565. DOI:10.1038/s41598-017-01518-5