1,192
Views
3
CrossRef citations to date
0
Altmetric
Plant Biology

Mutualism between Dark Septate Endophytes (DSEs) and their host plants under metal stress: a case study

, , & ORCID Icon
Pages 667-677 | Received 23 Jul 2020, Accepted 06 Jul 2021, Published online: 15 Jul 2021

References

  • Abid R, Manzoor M, De Oliveira LM, Da Silva E, Rathinasabapathi B, Rensing C, Mahmood S, Liu X, Ma LQ. 2019. Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata. Environ Pollut. 248:756–762. doi:10.1016/j.envpol.2019.02.054.
  • Affholder MC, Pricop AD, Laffont-Schwob I, Coulomb B, Rabier J, Borla A, Prudent P. 2014. As, Pb, Sb and Zn transfer from soil to root of wild rosemary: Do native symbionts matter? Plant Soil. 382(1):219–236. doi:10.1007/s11104-014-2135-4.
  • Ban Y, Xiao Z, Wu C, Lv Y, Meng F, Wang J, Xu Z. 2021. The positive effects of inoculation using arbuscular mycorrhizal fungi and/or dark septate endophytes on the purification efficiency of CuO-nanoparticles-polluted wastewater in constructed wetland. J Hazard Mater. 126095. doi:10.1016/j.jhazmat.2021.126095.
  • Ban YH, Xu ZY, Yang YR, Zhang HH, Chen H, Tang M. 2017. Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L.). Pedosphere. 27(2):283–292. doi:10.1016/S1002-0160(17)60316-3.
  • Barberis L, Chevalier W, Toussaint ML, Binet P, Piola F, Michalet S. 2020. Responses of the species complex Fallopia × bohemica to single-metal contaminations to Cd, Cr or Zn: growth traits, metal accumulation and secondary metabolism. Environ Monit Assess. 192(11):1–19. doi:10.1007/s10661-020-08627-1.
  • Berch SM, Kendrick B. 1982. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies. Mycologia. 74(5):769–776. doi:10.2307/3792863.
  • Brown PH, Cakmak I, Zhang QL. 1993. Zinc in soils and plants: form and function of Zinc plants, springer. Dordrecht. 93–106. doi:10.1007/978-94-011-0878-2_7.
  • Cai ZZ, Kastell A, Speiser C, Smetanska I. 2013. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability. Appl Biochem Biotech. 171(2):330–340. doi:10.1007/s12010-013-0354-4.
  • Cao GH, He S, Chen D, Li T, Zhao ZW. 2019. EpABC genes in the adaptive responses of Exophiala pisciphila to metal stress: functional importance and relation to metal tolerance. Appl Environ Microb. 85(23):e01844–19. doi:10.1128/AEM.01844-19.
  • Diao YH, Li T, Zhao ZW. 2013. Zinc accumulation characteristics of two Exophiala strains and their antioxidant response to Zn2+ stress. J Environ Prot Ecol. 4:12–19. doi:10.4236/jep.2013.44A003.
  • Galati S, Gullì M, Giannelli G, Furini A, DalCorso G, Fragni R, Buschini A, Visioli G. 2021. Heavy metals modulate DNA compaction and methylation at CpG sites in the metal hyperaccumulator Arabidopsis halleri. Environ Mol Mutagen. 62(2):133–142. doi:10.1002/em.22421.
  • Gonzalez-Guerrero M, Melville LH, Ferrol N, Lott J, Azcón-Aguilar C, Peterson RL. 2008. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol. 54(2):103–110. doi:10.1139/w07-119.
  • Gucwa-Przepióra E, Nadgórska-Socha A, Fojcik B, Chmura D. 2016. Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environ Sci Pollut R. 23(5):4742–4755. doi:10.1007/s11356-015-5695-9.
  • Gupta S, Thokchom SD, Kapoor R. 2021. Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in triticum aestivum L. grown in arsenic contaminated soil. Front Plant Sci. 12:334. doi:10.3389/fpls.2021.640379.
  • Haruma T, Yamaji K, Masuya H. 2021. Phialocephala fortinii increases aluminum tolerance in Miscanthus sinensis growing in acidic mine soil. Lett Appl Microbiol. doi:10.1111/lam.13514.
  • Hoagland DR, Arnon DI. 1950. The Water-Culture Method for Growing Plants without Soil. Cal agric exp st circ. 347.2nd edit. doi:10.1016/S0140-6736(00)73482-9.
  • Hui FQ, Liu J, Gao QK, Lou BG. 2015. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum. Environ Sci Technol. 37(11):184–191. doi:10.1016/j.jes.2015.06.005.
  • Jumpponen A. 2001. Dark septate endophytes-Are they mycorrhizal? Mycorrhiza. 11(4):207–211. doi:10.1007/s005720100112.
  • Jumpponen A, Trappe JM. 1998. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 140(2):295–310. doi:10.1046/j.1469-8137.1998.00265.x.
  • Khastini RO, Jannah R. 2021. Potential contribution of dark-septate endophytic fungus isolated from Pulau dua nature reserve, Banten on growth promotion of Chinese cabbage. In 2nd and 3rd International Conference on Food Security Innovation (ICFSI 2018-2019). Atlantis Press, 83–89. doi:10.2991/absr.k.210304.015.
  • Khullar S, Reddy MS. 2018. Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Curr Biotech. 7(3):231–241. doi:10.2174/2211550105666160531145544.
  • Kim CG, Power SA, Bell J. 2003. Effects of cadmium on growth and glucose utilisation of ectomycorrhizal fungi in vitro. Mycorrhiza. 13(4):223–226. doi:10.1007/s00572-003-0235-8.
  • Li X, He C, He XL, Su F, Hou LF, Ren Y, Hou YT. 2019. Dark septate endophytes improve the growth of host and non-host plants under drought stress through altered root development. Plant Soil. 439(1):259–272. doi:10.1007/s11104-019-04057-2.
  • Li X, Lan X, Feng X, Luan X, Cao X, Cui Z. 2021. Biosorption capacity of Mucor circinelloides bioaugmented with Solanum nigrum L. for the cleanup of lead, cadmium and arsenic. Ecotox Environ Safe. 212:112014. doi:10.1016/j.ecoenv.2021.112014.
  • Li T, Liu MJ, Zhang XT, Zhang HB, Sha T, Zhao ZW. 2011. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila. Sci Total Environ. 409(6):1069–1074. doi:10.1016/j.scitotenv.2010.12.012.
  • Likar M, Regvar M. 2013. Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil. 370(1):593–604. doi:10.1007/s11104-013-1656-6.
  • Mani D, Kumar C, Patel NK. 2015. Integrated micro-biochemical approach for phytoremediation of cadmium and zinc contaminated soils. Ecotox Environ Safe. 111:86–95. doi:10.1016/j.ecoenv.2014.09.019.
  • Mcgonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115(3):495–501. doi:10.2307/2556652.
  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. 2011. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam T. 213:113–136. doi:10.1007/978-1-4419-9860-6_4.
  • Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. 2021. Metal-Fungus interaction: review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 129976. doi:10.1016/j.chemosphere.2021.129976.
  • Rasafi TE, Nouri M, Bouda S, Haddioui A. 2016. The effect of Cd, Zn and Fe on seed germination and early seedling growth of wheat and bean. Ekológia (Bratislava). 35(3):213–223. doi:10.1515/eko-2016-0017.
  • Rehman R, Asif M, Cakmak I, Ozturk L. 2021. Differences in uptake and translocation of foliar-applied Zn in maize and wheat. Plant Soil. 462(1):235–244. doi:10.1007/s11104-021-04867-3.
  • Shadmani L, Jamali S, Fatemi A. 2021a. Isolation, identification, and characterization of cadmium-tolerant endophytic fungi isolated from barley (Hordeum vulgare L.) roots and their role in enhancing phytoremediation. Braz J Microbiol. 1–10. doi:10.1007/s42770-021-00493-4.
  • Shadmani L, Jamali S, Fatemi A. 2021b. Effects of root endophytic fungus, Microdochium bolleyi on cadmium uptake, translocation and tolerance by Hordeum vulgare L. Biologia. 76(2):711–719. doi:10.2478/s11756-020-00598-5.
  • Shen M, Schneider H, Xu RB, Cao GH, Zhang HB, Li T, Zhao ZW. 2020. Dark septate endophyte enhances maize cadmium (Cd) tolerance by the remodeled host cell walls and the altered Cd subcellular distribution. Environ Exp Bot. 172:104000. doi:10.1016/j.envexpbot.2020.104000.
  • Smith FA, Grace EJ, Smith SE. 2009. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 182(2):347–358. doi:10.1111/j.1469-8137.2008.02753.x.
  • Szopinski M, Sitko K, Gieron Z, Rusinowski S, Corso M, Hermans C, Verbruggen N, Malkowski E. 2019. Toxic effects of Cd and Zn on the photosynthetic apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Front Plant Sci. 10:748. doi:10.3389/fpls.2019.00748.
  • Teng Y, Du XZ, Wang T, Mi CY, Yu HY, Zou LY. 2018. Isolation of a fungus Penicillium sp. with zinc tolerance and its mechanism of resistance. Arch Microbiol. 200(1):159–169. doi:10.1007/s00203-017-1430-x.
  • Wang JL, Li T, Liu GY, Smith JM, Zhao ZW. 2016. Unraveling the role of dark septate endophyte (DSE). colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep-uk. 6(1):1–12. doi:10.1038/srep22028.
  • Yin Z, Zhang Y, Hu N, Shi Y, Li T, Zhao Z. 2021. Differential responses of 23 maize cultivar seedlings to an arbuscular mycorrhizal fungus when grown in a metal-polluted soil. Sci Total Environ. 148015. doi:10.1016/j.scitotenv.2021.148015.
  • Yung L, Blaudez D, Maurice N, Azou-Barré A, Sirguey C. 2021. Dark septate endophytes isolated from non-hyperaccumulator plants can increase phytoextraction of Cd and Zn by the hyperaccumulator Noccaea caerulescens. Environ Sci Pollut R. 1–14. doi:10.1007/s11356-020-11793-x.
  • Zhan FD, He YM, Li Y, Li T, Yang YY, Toor GS, Zhao ZW. 2015a. Subcellular distribution and chemical forms of cadmium in a dark septate endophyte (DSE). Exophiala pisciphila. Environ Sci Pollut R. 22(22):17897–17905. doi:10.1007/s11356-015-5012-7.
  • Zhan FD, He YM, Li T, Yang YY, Toor GS, Zhao ZW. 2015b. Tolerance and antioxidant response of a dark septate endophyte (DSE), Exophiala pisciphila, to cadmium stress. B Environ Contam Tox. 94(1):96–102. doi:10.1007/s00128-014-1401-8.
  • Zhang XF, Hu ZH, Yan TX, Lu RR, Peng CL, Li SS, Jing YX. 2019. Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in Zea mays. Ecotox Environ Safe. 171:352–360. doi:10.1016/j.ecoenv.2018.12.097.
  • Zhang G, Su L, Li T, Li MR, He YM, Qin L. 2020. Effects of nitrogen on mineral nutrients and cadmium accumulation in a strain of DSE mycelium under cadmium stress. IOP Conf Ser: Earth Environ Sci. 446(3):032082. doi:10.1088/1755-1315/446/3/032082.
  • Zhang YJ, Zhang Y, Liu MJ, Shi XD, Zhao ZW. 2008. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol. 46(6):624–632. doi:10.1007/s12275-008-0163-6.
  • Zhao DK, Li T, Shen M, Wang JL, Zhao ZW. 2015a. Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: evidence from RNA-seq data. Microbiol Res. 170:27–35. doi:10.1016/j.micres.2014.09.005.
  • Zhao YF, Wu JF, Shang DR, Ning JS, Zhai YX, Sheng XF, Ding HY. 2015b. Subcellular distribution and chemical forms of cadmium in the edible seaweed, porphyra yezoensis. Food Chem. 168:48–54. doi:10.1016/j.foodchem.2014.07.054.
  • Zhu LL, Li T, Wang CJ, Zhang XR, Xu LJ, Xu RB, Zhao ZW. 2018. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress. Environ Sci Pollut R. 25(35):35232–35241. doi:10.1007/s11356-018-3456-2.
  • Zulfiqar U, Hussain S, Ishfaq M, Matloob A, Ali N, Ahmad M, Ali N, Ahmad M, Alyemeni MN, Ahmad P. 2020. Zinc-induced Effects on productivity, Zinc use efficiency, and grain biofortification of bread wheat under different tillage permutations. Agronomy. 10(10):1566. doi:10.3390/agronomy10101566.