850
Views
2
CrossRef citations to date
0
Altmetric
Cancer Biology

Transcriptome analysis of FuZheng XiaoJi prescription inhibiting the proliferation of colorectal cancer

, , , , , , & show all
Pages 719-729 | Received 20 Apr 2021, Accepted 16 Jun 2021, Published online: 17 Aug 2021

References

  • Aran V, Victorino AP, Thuler LC, Ferreira CG. 2016. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 15:195–203. doi:10.1016/j.clcc.2016.02.008
  • Chen D, Li Y, Zhang X, Wu H, Wang Q, Cai J, Cui Y, Liu H, Lan P, Wang J, et al. 2019b. Ubiquitin ligase TRIM65 promotes colorectal cancer metastasis by targeting ARHGAP35 for protein degradation. Oncogene. 38:6429–6444. doi:10.1038/s41388-019-0891-6
  • Chen X, Liu J, Zhang Q, Liu B, Cheng Y, Zhang Y, Sun Y, Ge H, Liu Y. 2020. Exosome-mediated transfer of miR-93-5p from cancer-associated fibroblasts confer radioresistance in colorectal cancer cells by downregulating FOXA1 and upregulating TGFB3. J Exp Clin Cancer Res. 39:65. doi:10.1186/s13046-019-1507-2
  • Chen C, Yao X, Xu Y, Zhang Q, Wang H, Zhao L, Wen G, Liu Y, Jing L, Sun X. 2019a. Dahuang Zhechong pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche. J Ethnopharmacol. 238:111878. doi:10.1016/j.jep.2019.111878
  • Chen X, Zeng K, Xu M, Hu X, Liu X, Xu T, He B, Pan Y, Sun H, Wang S. 2018. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150-5p/VEGFA axis. Cell Death Dis. 9:982. doi:10.1038/s41419-018-0962-6
  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. 2019. Colorectal cancer. Lancet. 394:1467–1480. doi:10.1016/s0140-6736(19)32319-0
  • Dweep H, Sticht C, Pandey P, Gretz N. 2011. miRWalk – database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform. 44:839–847. doi:10.1016/j.jbi.2011.05.002
  • Faktor J, Pjechová M, Hernychová L, Vojtěšek B. 2019. Protein ubiquitination research in oncology. Klin Onkol Casopis Ceske Slovenske Onkologicke Spolecnosti. 32:56–64. doi:10.14735/amko20193S
  • Grossi V, Peserico A, Tezil T, Simone C. 2014. P38α MAPK pathway: a key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol. 20:9744–9758. doi:10.3748/wjg.v20.i29.9744
  • Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M. 2004. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature. 430:88–93. doi:10.1038/nature02555
  • Han H, Cho JW, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, et al. 2018. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46:D380–d386. doi:10.1093/nar/gkx1013
  • Hong M, Zhang Z, Chen Q, Lu Y, Zhang J, Lin C, Zhang F, Zhang W, Li X, Zhang W, Li X. 2019. IRF1 inhibits the proliferation and metastasis of colorectal cancer by suppressing the RAS-RAC1 pathway. Cancer Manag Res. 11:369–378. doi:10.2147/cmar.s186236
  • Hu Y, Wang J. 2019. Interactions between clopidogrel and traditional Chinese medicine. J Thromb Thrombolysis. 48:491–499. doi:10.1007/s11239-019-01945-3
  • Huang RH, Quan YJ, Chen JH, Wang TF, Xu M, Ye M, Yuan H, Zhang CJ, Liu XJ, Min ZJ. 2017. Osteopontin promotes cell migration and invasion, and inhibits apoptosis and autophagy in colorectal cancer by activating the p38 MAPK signaling pathway. Cell Physiol Biochem. 41:1851–1864. doi:10.1159/000471933
  • Jiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, Zhang Z, Harland RM. 2015. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci. 72:3425–3439. doi:10.1007/s00018-015-1934-y
  • Jing W. 2019. Clinical study of Fuzheng Xiaoji decoction combined with capecitabine and oxaliplatin in the treatment of advanced colon cancer. J Chang Med Coll. 33:467–430.
  • Kai-jun C, Huiming W, Jiangping Q, Liping L, Caili L. 2015. The application value of Fuzheng Xiaoji decoction combined with chemotherapy medicine in treating advanced colon cancer. CJGMCM. 30:2638–2640.
  • Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 12:357–360. doi:10.1038/nmeth.3317
  • Kim SH, Park YY, Cho SN, Margalit O, Wang D, DuBois RN. 2016. Krüppel-like factor 12 promotes colorectal cancer growth through early growth response protein 1. PLoS One. 11:e0159899. doi:10.1371/journal.pone.0159899
  • Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, Mungall CJ, Yunes JM. 2018. GOATOOLS: a python library for gene ontology analyses. Sci Rep. 8:10872. doi:10.1038/s41598-018-28948-z
  • Koelzer VH, Sokol L, Zahnd S, Christe L, Dawson H, Berger MD, Inderbitzin D, Zlobec I, Lugli A. 2017. Digital analysis and epigenetic regulation of the signature of rejection in colorectal cancer. Oncoimmunology. 6:e1288330. doi:10.1080/2162402x.2017.1288330
  • Kumar SS, Tomita Y, Wrin J, Bruhn M, Swalling A, Mohammed M, Price TJ, Hardingham JE. 2017. High early growth response 1 (EGR1) expression correlates with resistance to anti-EGFR treatment in vitro and with poorer outcome in metastatic colorectal cancer patients treated with cetuximab. Clin Transl Oncol. 19:718–726. doi:10.1007/s12094-016-1596-8
  • Lee K, Cho SG, Choi YK, Choi YJ, Lee GR, Jeon CY, Ko SG. 2018. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 colorectal cancer cells. Int J Mol Med. 41:373–380. doi:10.3892/ijmm.2017.3241
  • Liu L, Zhang Y, Wong CC, Zhang J, Dong Y, Li X, Kang W, Chan FKL, Sung JJY, Yu J. 2018. RNF6 promotes colorectal cancer by activating the Wnt/β-catenin pathway via ubiquitination of TLE3. Cancer Res. 78:1958–1971. doi:10.1158/0008-5472.can-17-2683
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi:10.1186/s13059-014-0550-8
  • Mansour MA. 2018. Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol. 101:80–93. doi:10.1016/j.biocel.2018.06.001
  • Mody K, Baldeo C, Bekaii-Saab T. 2018. Antiangiogenic therapy in colorectal cancer. Cancer J. 24:165–170. doi:10.1097/ppo.0000000000000328
  • Ohsugi T, Yamaguchi K. 2019. Anti-apoptotic effect by the suppression of IRF1 as a downstream of Wnt/β-catenin signaling in colorectal cancer cells. Oncogene. 38:6051–6064. doi:10.1038/s41388-019-0856-9
  • Osumi H, Shinozaki E, Yamaguchi K, Zembutsu H. 2019. Clinical utility of circulating tumor DNA for colorectal cancer. Cancer Sci. 110:1148–1155. doi:10.1111/cas.13972
  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 33:290–295. doi:10.1038/nbt.3122
  • Piel FB, Steinberg MH, Rees DC. 2017. Sickle cell disease. N Engl J Med. 376:1561–1573. doi:10.1056/NEJMra1510865
  • Schneider D, Chua RL, Molitor N, Hamdan FH, Rettenmeier EM, Prokakis E, Mishra VK, Kari V, Wegwitz F, Johnsen SA, Kosinsky RL. 2019. The E3 ubiquitin ligase RNF40 suppresses apoptosis in colorectal cancer cells. Clin Epigenet. 11:98. doi:10.1186/s13148-019-0698-x
  • Snyder R, Thekkumkara T. 2013. Interplay between EGR1 and SP1 is critical for 13-cis retinoic acid-mediated transcriptional repression of angiotensin type 1A receptor. J Mol Endocrinol. 50:361–374. doi:10.1530/jme-12-0154
  • Sturm M, Schroeder C, Bauer P. 2016. Seqpurge: highly-sensitive adapter trimming for paired-end NGS data. BMC Bioinform. 17:208. doi:10.1186/s12859-016-1069-7
  • Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 35:600–604. doi:10.3109/10799893.2015.1030412
  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. 2019. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47:D607–d613. doi:10.1093/nar/gky1131
  • Tang B, Liang W, Liao Y, Li Z, Wang Y, Yan C. 2019. PEA15 promotes liver metastasis of colorectal cancer by upregulating the ERK/MAPK signaling pathway. Oncol Rep 41:43–56. doi:10.3892/or.2018.6825
  • Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, Li Q, Han Z, Wang D, Wei H, et al. 2015. MicroRNA-93 suppress colorectal cancer development via Wnt/β-catenin pathway downregulating. Oncol ReportsTumour Biol. 36:1701–1710. doi:10.1007/s13277-014-2771-6
  • Thanikachalam K, Khan G. 2019. Colorectal cancer and nutrition. Nutrients. 11:164. doi:10.3390/nu11010164
  • Vizcaíno C, Mansilla S, Portugal J. 2015. Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther. 152:111–124. doi:10.1016/j.pharmthera.2015.05.008
  • Wang J, Wong YK, Liao F. 2018. What has traditional Chinese medicine delivered for modern medicine? Expert Rev Mol Med. 20:e4. doi:10.1017/erm.2018.3
  • Woolston A, Khan K, Spain G, Barber LJ, Griffiths B, Gonzalez-Exposito R, Hornsteiner L, Punta M, Patil Y, Newey A, et al. 2019. Genomic and transcriptomic determinants of therapy resistance and immune landscape evolution during anti-EGFR treatment in colorectal cancer. Cancer Cell. 36:35–50. doi:10.1016/j.ccell.2019.05.013
  • Wu Y, Zhang S, Yan J. 2020. IRF1 association with tumor immune microenvironment and use as a diagnostic biomarker for colorectal cancer recurrence. Oncol Lett. 19:1759–1770. doi:10.3892/ol.2020.11289
  • Xu X, Huang A, Cui X, Han K, Hou X, Wang Q, Cui L, Yang Y. 2019. Ubiquitin specific peptidase 5 regulates colorectal cancer cell growth by stabilizing Tu translation elongation factor. Theranostics. 9:4208–4220. doi:10.7150/thno.33803
  • Xu Y, Mao JJ, Sun L, Yang L, Li J, Hao Y, Li H, Hou W, Chu Y, Bai Y, et al. 2017. Association between use of traditional Chinese medicine herbal therapy and survival outcomes in patients with stage II and III colorectal cancer: a multicenter prospective cohort study. J Natl Cancer Inst Monogr. 2017. doi:10.1093/jncimonographs/lgx015
  • Yu Y, Peng K, Li H, Zhuang R, Wang Y, Li W, Yu S, Liang L, Xu X, Liu T. 2018. SP1 upregulated FoxO3à promotes tumor progression in colorectal cancer. Oncol Rep. 39:2235–2242. doi:10.3892/or.2018.6323
  • Yu S, Wang D, Shao Y, Zhang T, Xie H, Jiang X, Deng Q, Jiao Y, Yang J, Cai C, Sun L. 2019. SP1-induced lncRNA TINCR overexpression contributes to colorectal cancer progression by sponging miR-7-5p. Aging. 11:1389–1403. doi:10.18632/aging.101839
  • Zhao DY, Jacobs KM, Hallahan DE, Thotala D. 2015. Silencing Egr1 attenuates radiation-induced apoptosis in normal tissues while killing cancer cells and delaying tumor growth. Mol Cancer Ther. 14:2343–2352. doi:10.1158/1535-7163.mct-14-1051