2,690
Views
3
CrossRef citations to date
0
Altmetric
Pharmacology & Pharmaceutics

Stem cell and its derivatives as drug delivery vehicles: an effective new strategy of drug delivery system

, , , , , , & show all
Pages 782-798 | Received 27 May 2021, Accepted 08 Aug 2021, Published online: 31 Aug 2021

References

  • Almeida CR, Caires HR, Vasconcelos DP, Barbosa MA. 2016. NAP-2 Secreted by human NK cells can stimulate mesenchymal stem/stromal cell recruitment. Stem Cell Rep. 6(4):466–473. doi:10.1016/j.stemcr.2016.02.012.
  • Almeida-Porada G, Atala AJ, Porada CD. 2020. Therapeutic mesenchymal stromal cells for immunotherapy and for gene and drug delivery. Mol Ther Methods Clin Dev. 16:204–224. doi:10.1016/j.omtm.2020.01.005.
  • An L, Wang Y, Lin J, Tian Q, Xie Y, Hu J, et al. 2019. Macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy. ACS Appl Mater Interfaces. 11(17):15251–15261. doi:10.1021/acsami.9b00495.
  • Bagheri E, Abnous K, Farzad SA, Taghdisi SM, Ramezani M, Alibolandi M. 2020. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Sci. 261:118369. doi:10.1016/j.lfs.2020.118369.
  • Banerji SK, Hayes MA. 2007. Examination of nonendocytotic bulk transport of nanoparticles across phospholipid membranes. Langmuir: ACS J Surf Colloids. 23(6):3305–3313.
  • Borghese C, Casagrande N, Corona G, Aldinucci D. 2020. Adipose-derived stem cells primed with paclitaxel inhibit ovarian cancer spheroid growth and overcome paclitaxel resistance. Pharmaceutics. 12(5). doi:10.3390/pharmaceutics12050401
  • Bose RJ, Kim BJ, Arai Y, Han IB, Moon JJ, Paulmurugan R, et al. 2018. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia. Biomaterials. 185:360–370. doi:10.1016/j.biomaterials.2018.08.018.
  • Cao S, Guo J, He Y, Alahdal M, Tang S, Zhao Y, et al. 2018. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy. Artif Cells Nanomed Biotechnol. 46(sup1):642–652. doi:10.1080/21691401.2018.1434185.
  • Chastkofsky MI, Pituch KC, Katagi H, Zannikou M, Ilut L, Xiao T, et al. 2021. Mesenchymal stem cells successfully deliver oncolytic virotherapy to diffuse intrinsic pontine glioma. Clin Cancer Res. 27(6):1766–1777. doi:10.1158/1078-0432.CCR-20-1499.
  • Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, et al. 2020. Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 486:18–28. doi:10.1016/j.canlet.2020.05.004.
  • Chiu RC. 2005. ‘Stealth immune tolerance’ in stem cell transplantation: potential for ‘universal donors’ in myocardial regenerative therapy. J Heart Lung Transplant. 24(5):511–516. doi:10.1016/j.healun.2004.11.010.
  • Coccè V, Farronato D, Brini AT, Masia C, Giannì AB, Piovani G, et al. 2017. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep. 7(1):9376. doi:10.1038/s41598-017-09175-4.
  • Danhier F. 2016. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 244(Pt A):108–121. doi:10.1016/j.jconrel.2016.11.015.
  • de Miguel-Beriain I. 2015. The ethics of stem cells revisited. Adv Drug Deliv Rev. 82–83:176–180. doi:10.1016/j.addr.2014.11.011.
  • de Witte SFH, Luk F, Sierra Parraga JM, Gargesha M, Merino A, Korevaar SS, et al. 2018. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 36(4):602–615. doi:10.1002/stem.2779.
  • Doherty GJ, McMahon HT. 2009. Mechanisms of endocytosis. Annu Rev Biochem. 78:857–902. doi:10.1146/annurev.biochem.78.081307.110540.
  • Fang J, Nakamura H, Maeda H. 2011. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 63(3):136–151. doi:10.1016/j.addr.2010.04.009.
  • Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al. 2009. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18(5):683–692. doi:10.1089/scd.2008.0253.
  • Gao C, Lin Z, Jurado-Sanchez B, Lin X, Wu Z, He Q. 2016a. Stem cell membrane-coated nanogels for highly efficient in vivo tumor targeted drug delivery. Small. 12(30):4056–4062. doi:10.1002/smll.201600624.
  • Gao C, Lin Z, Wu Z, Lin X, He Q. 2016b. Stem-cell-membrane camouflaging on near-infrared photoactivated upconversion nanoarchitectures for in vivo remote-controlled photodynamic therapy. ACS Appl Mater Interfaces. 8(50):34252–34260. doi:10.1021/acsami.6b12865.
  • Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, et al. 2017. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater. 29(35). doi:10.1002/adma.201701429.
  • Gozde U, Ufuk G. 2018. Smart drug delivery systems in cancer therapy. Curr Drug Targets. 19(3):202–212. doi:10.2174/1389450117666160401124624.
  • Gutierrez-Millan C, Calvo Díaz C, Lanao JM, Colino CI. 2021. Advances in exosomes-based drug delivery systems. Macromol Biosci. 21(1):e2000269. doi:10.1002/mabi.202000269.
  • Hagenhoff A, Bruns CJ, Zhao Y, von Luttichau I, Niess H, Spitzweg C, et al. 2016. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther. 16(9):1079–1092. doi:10.1080/14712598.2016.1196179.
  • Haider H, Jiang S, Idris NM, Ashraf M. 2008. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res. 103(11):1300–1308. doi:10.1161/CIRCRESAHA.108.186742.
  • Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. 2019. Mesenchymal stem cells for regenerative medicine. Cells. 8(8). doi:10.3390/cells8080886.
  • Herea D-D, Labusca L, Radu E, Chiriac H, Grigoras M, Panzaru OD, et al. 2019. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting. Mater Sci Eng C-Mater Biol Appl. 94:666–676. doi:10.1016/j.msec.2018.10.019.
  • Hong HS, Kim YH, Son Y. 2012. Perspectives on mesenchymal stem cells: tissue repair, immune modulation, and tumor homing. Arch Pharmacal Res. 35(2):201–211. doi:10.1007/s12272-012-0201-0.
  • Huang B, Qian J, Ma J, Huang Z, Shen Y, Chen X, et al. 2014. Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res Ther. 5(1):22. doi:10.1186/scrt410.
  • Huang RY, Lin YH, Lin SY, Li YN, Chiang CS, Chang CW. 2019a. Magnetic ternary nanohybrids for nonviral gene delivery of stem cells and applications on cancer therapy. Theranostics. 9(8):2411–2423. doi:10.7150/thno.29326.
  • Huang X, Chen H, Xie Y, Cao Z, Lin X, Wang Y. 2019b. Foxo1 Overexpression ameliorates TNF-alpha-induced oxidative damage and promotes osteogenesis of human periodontal ligament stem cells via antioxidant defense activation. Stem Cells Int. 2019:2120453. doi:10.1155/2019/2120453.
  • Kalimuthu S, Gangadaran P, Rajendran RL, Zhu L, Oh JM, Lee HW, et al. 2018a. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front Pharmacol. 9:1116. doi:10.3389/fphar.2018.01116.
  • Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Rajendran RL, et al. 2017. In vivo tracking of chemokine receptor CXCR4-engineered mesenchymal stem cell migration by optical molecular imaging. Stem Cells Int. 2017:8085637. doi:10.1155/2017/8085637.
  • Kalimuthu S, Zhu L, Oh JM, Gangadaran P, Lee HW, Baek SH, et al. 2018b. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin. Int J Med Sci. 15(10):1051–1061. doi:10.7150/ijms.25760.
  • Karp JM, Leng Teo GS. 2009. Mesenchymal stem cell homing: the devil Is in the details. Cell Stem Cell. 4(3):206–216. doi:10.1016/j.stem.2009.02.001.
  • Karp JM, Leng Teo GS. 2009. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 4(3):206–216. doi:10.1016/j.stem.2009.02.001.
  • Kerkelä E, Hakkarainen T, Mäkelä T, Raki M, Kambur O, Kilpinen L, et al. 2013. Transient proteolytic modification of mesenchymal stromal cells increases lung clearance rate and targeting to injured tissue. Stem Cells Transl Med. 2(7):510–520. doi:10.5966/sctm.2012-0187.
  • Kiernan CH, KleinJan A, Peeters M, Wolvius EB, Farrell E, Brama PAJ. 2018. Allogeneic chondrogenically differentiated human bone marrow stromal cells do not induce dendritic cell maturation. J Tissue Eng Regen Med. 12(6):1530–1540. doi:10.1002/term.2682.
  • Kolios G, Moodley Y. 2013. Introduction to stem cells and regenerative medicine. Respiration. 85(1):3–10. doi:10.1159/000345615.
  • Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. 2018. Concise review: mesenchymal stem cell-based drug delivery: the good, the bad, the ugly, and the promise. Stem Cells Transl Med. 7(9):651–663. doi:10.1002/sctm.18-0024.
  • Layek B, Sadhukha T, Panyam J, Prabha S. 2018. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting. Mol Cancer Ther. 17(6):1196–1206. doi:10.1158/1535-7163.Mct-17-0682.
  • Layek B, Shetty M, Nethi SK, Sehgal D, Starr TK, Prabha S. 2020. Mesenchymal stem cells as guideposts for nanoparticle-mediated targeted drug delivery in ovarian cancer. Cancers (Basel). 12(4). doi:10.3390/cancers12040965.
  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, et al. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell. 5(1):54–63. doi:10.1016/j.stem.2009.05.003.
  • Leibacher J, Henschler R. 2016. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 7:7. doi:10.1186/s13287-015-0271-2.
  • Levy O, Brennen WN, Han E, Rosen DM, Musabeyezu J, Safaee H, et al. 2016. A prodrug-doped cellular Trojan horse for the potential treatment of prostate cancer. Biomaterials. 91:140–150. doi:10.1016/j.biomaterials.2016.03.023.
  • Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, et al. 2019. Recent progress in drug delivery. Acta Pharmaceutica Sinica B. 9(6):1145–1162. doi:10.1016/j.apsb.2019.08.003.
  • Li D, Xue W, Li M, Dong M, Wang J, Wang X, et al. 2018a. VCAM-1(+) macrophages guide the homing of HSPCs to a vascular niche. Nature. 564(7734):119–124. doi:10.1038/s41586-018-0709-7.
  • Li L, Guan Y, Liu H, Hao N, Liu T, Meng X, et al. 2011. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano. 5(9):7462–7470. doi:10.1021/nn202399w.
  • Li M, Qiu L, Hu W, Deng X, Xu H, Cao Y, et al. 2018b. Genetically-modified bone mesenchymal stem cells with TGF-beta3 improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res. 367(1):24–29. doi:10.1016/j.yexcr.2018.02.006.
  • Li Z, Fan D, Xiong D. 2015. Mesenchymal stem cells as delivery vectors for anti-tumor therapy. Stem Cell Investig. 2:6. doi:10.3978/j.issn.2306-9759.2015.03.01.
  • Lin L, Du L. 2018. The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol. 326:24–32. doi:10.1016/j.cellimm.2017.07.010.
  • Lisini D, Nava S, Frigerio S, Pogliani S, Maronati G, Marcianti A, et al. 2020. Automated large-scale production of paclitaxel loaded mesenchymal stromal cells for cell therapy applications. Pharmaceutics. 12:5. doi:10.3390/pharmaceutics12050411.
  • Luo M, Zhou Y, Gao N, Cheng W, Wang X, Cao J, et al. 2020. Mesenchymal stem cells transporting black phosphorus-based biocompatible nanospheres: active Trojan horse for enhanced photothermal cancer therapy. Chem Eng J. 385. doi:10.1016/j.cej.2019.123942.
  • Lv Q, Deng J, Chen Y, Wang Y, Liu B, Liu J. 2020. Engineered human adipose stem-cell-derived exosomes loaded with miR-21-5p to promote diabetic cutaneous wound healing. Mol Pharm. 17(5):1723–1733. doi:10.1021/acs.molpharmaceut.0c00177.
  • Ma M, Chen S, Liu Z, Xie H, Deng H, Shang S, et al. 2017. miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. Onco Targets Ther. 10:4161–4171. doi:10.2147/OTT.S143315.
  • Maiti P, Peruzzaro S, Kolli N, Andrews M, Al-Gharaibeh A, Rossignol J, et al. 2019. Transplantation of mesenchymal stem cells overexpressing interleukin-10 induces autophagy response and promotes neuroprotection in a rat model of TBI. J Cell Mol Med. 23(8):5211–5224. doi:10.1111/jcmm.14396.
  • Majumdar MK, Keane-Moore M, Buyaner D, Hardy WB, Moorman MA, McIntosh KR, et al. 2003. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci. 10(2):228–241. doi:10.1007/bf02256058.
  • Marquez-Curtis LA, Janowska-Wieczorek A. 2013. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013:561098. doi:10.1155/2013/561098.
  • Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, et al. 2020. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater. 113:42–62. doi:10.1016/j.actbio.2020.06.036.
  • Mills KM, Szczerkowski JLA, Habib SJ. 2017. WNT ligand presentation and reception: from the stem cell niche to tissue engineering. Open Biol. 7:8. doi:10.1098/rsob.170140.
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. 2021. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 20(2):101–124. doi:10.1038/s41573-020-0090-8.
  • Moku G, Layek B, Trautman L, Putnam S, Panyam J, Prabha S. 2019. Improving payload capacity and anti-tumor efficacy of mesenchymal stem cells using TAT peptide functionalized polymeric nanoparticles. Cancers (Basel). 11(4). doi:10.3390/cancers11040491.
  • Mu H, Holm R. 2018. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv. 15(8):771–785. doi:10.1080/17425247.2018.1504018.
  • Muslimov AR, Timin AS, Bichaykina VR, Peltek OO, Karpov TE, Dubavik A, et al. 2020. Biomimetic drug delivery platforms based on mesenchymal stem cells impregnated with light-responsive submicron sized carriers. Biomater Sci. 8(4):1137–1147. doi:10.1039/c9bm00926d.
  • Nakamura Y, Mochida A, Choyke PL, Kobayashi H. 2016. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 27(10):2225–2238. doi:10.1021/acs.bioconjchem.6b00437.
  • Oh J, Son YS, Kim WH, Kwon OK, Kang BJ. 2021. Mesenchymal stem cells genetically engineered to express platelet-derived growth factor and heme oxygenase-1 ameliorate osteoarthritis in a canine model. J Orthop Surg Res. 16(1):43. doi:10.1186/s13018-020-02178-4.
  • Pang L, Zhang C, Qin J, Han L, Li R, Hong C, et al. 2017. A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv. 24(1):83–91. doi:10.1080/10717544.2016.1230903.
  • Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. 2014. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 192:262–270. doi:10.1016/j.jconrel.2014.07.042.
  • Peng LH, Fung KP, Leung PC, Gao JQ. 2011. Genetically manipulated adult stem cells for wound healing. Drug Discov Today. 16(21–22):957–966. doi:10.1016/j.drudis.2011.07.009.
  • Peruzzaro ST, Andrews MMM, Al-Gharaibeh A, Pupiec O, Resk M, Story D, et al. 2019. Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflammation. 16(1):2. doi:10.1186/s12974-018-1383-2.
  • Pessina A, Bonomi A, Coccè V, Invernici G, Navone S, Cavicchini L, et al. 2011. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One. 6(12):e28321. doi:10.1371/journal.pone.0028321.
  • Poon W, Kingston BR, Ouyang B, Ngo W, Chan WCW. 2020. A framework for designing delivery systems. Nat Nanotechnol. 15(10):819–829. doi:10.1038/s41565-020-0759-5.
  • Preynat-Seauve O, Krause K-H. 2011. Stem cell sources for regenerative medicine: the immunological point of view. Semin Immunopathol. 33(6):519–524. doi:10.1007/s00281-011-0271-y.
  • Qi K, Li N, Zhang Z, Melino G. 2018. Tissue regeneration: The crosstalk between mesenchymal stem cells and immune response. Cell Immunol. 326:86–93. doi:10.1016/j.cellimm.2017.11.010.
  • Regmi S, Pathak S, Kim JO, Yong CS, Jeong JH. 2019. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives. Eur J Cell Biol. 98(5–8):151041. doi:10.1016/j.ejcb.2019.04.002.
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 377(Pt 1):159–169.
  • Rhee KJ, Lee JI, Eom YW. 2015. Mesenchymal stem cell-mediated effects of tumor support or suppression. Int J Mol Sci. 16(12):30015–30033. doi:10.3390/ijms161226215.
  • Ruan J, Ji J, Song H, Qian Q, Wang K, Wang C, et al. 2012. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res Lett. 7(1):309. doi:10.1186/1556-276x-7-309.
  • Sadhukha T, O’Brien TD, Prabha S. 2014. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release. 196:243–251. doi:10.1016/j.jconrel.2014.10.015.
  • Saeedi M, Eslamifar M, Khezri K, Dizaj SM. 2019. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother. 111:666–675. doi:10.1016/j.biopha.2018.12.133.
  • Salehi H, Al-Arag S, Middendorp E, Gergely C, Cuisinier F, Orti V. 2018. Dental pulp stem cells used to deliver the anticancer drug paclitaxel. Stem Cell Res Ther. 9(1):103. doi:10.1186/s13287-018-0831-3.
  • Saulite L, Pleiko K, Popena I, Dapkute D, Rotomskis R, Riekstina U. 2018. Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells. Beilstein J Nanotechnol. 9:321–332. doi:10.3762/bjnano.9.32.
  • Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. 2019. Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des. 25(11):1312–1334. doi:10.2174/1381612825666190425163424.
  • Sheyn D, Shapiro G, Tawackoli W, Jun DS, Koh Y, Kang KB, et al. 2016. PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries. Mol Ther. 24(2):318–330. doi:10.1038/mt.2015.211.
  • Song SY, Hong J, Go S, Lim S, Sohn HS, Kang M, et al. 2020. Interleukin-4 gene transfection and spheroid formation potentiate therapeutic efficacy of mesenchymal stem cells for osteoarthritis. Adv Healthc Mater. 9(5):e1901612. doi:10.1002/adhm.201901612.
  • Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. 2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med. 16(9):1035–1041. doi:10.1038/nm.2198.
  • Sun L, Cui M, Wang Z, Feng X, Mao J, Chen P, et al. 2007. Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem Biophys Res Commun. 357(3):779–784. doi:10.1016/j.bbrc.2007.04.010.
  • Sun L, Fan X, Zhang L, Shi G, Aili M, Lu X, et al. 2014. Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats. Int J Mol Med. 34(4):987–996. doi:10.3892/ijmm.2014.1890.
  • Suresh SC, Selvaraju V, Thirunavukkarasu M, Goldman JW, Husain A, Alexander Palesty J, et al. 2015. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol. 201:517–528. doi:10.1016/j.ijcard.2015.08.117.
  • Teng CF, Jeng LB, Shyu WC. 2018. Role of insulin-like growth factor 1 receptor signaling in stem cell stemness and therapeutic efficacy. Cell Transplant. 27(9):1313–1319. doi:10.1177/0963689718779777.
  • Thanuja MY, Anupama C, Ranganath SH. 2018. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev. 132:57–80. doi:10.1016/j.addr.2018.06.012.
  • Thanuja MY, Anupama C, Ranganath SH. 2018. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: so near and yet so far. Adv Drug Deliv Rev. 132:57–80. doi:10.1016/j.addr.2018.06.012.
  • Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, et al. 2019. Safe and effective delivery of antitumor drug using mesenchymal stem cells impregnated with submicron carriers. ACS Appl Mater Interfaces. 11(14):13091–13104. doi:10.1021/acsami.8b22685.
  • Timin AS, Peltek OO, Zyuzin MV, Muslimov AR, Karpov TE, Epifanovskaya OS, et al. 2019. Safe and effective delivery of antitumor drug using mesenchymal stem cells impregnated with submicron carriers. ACS Appl Mater Interfaces. 11(14):13091–13104. doi:10.1021/acsami.8b22685.
  • Trams EG, Lauter CJ, Salem N, Jr., Heine U. 1981. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 645(1):63–70. doi:10.1016/0005-2736(81)90512-5.
  • Vader P, Mol EA, Pasterkamp G, Schiffelers RM. 2016. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 106(Pt A):148–156. doi:10.1016/j.addr.2016.02.006.
  • Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. 2015. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Delivery. 6(7):795–826. doi:10.4155/tde.15.34.
  • Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, et al. 2021. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci. 9(4):1088–1103. doi:10.1039/d0bm01164a.
  • Wang W, Lu K-J, Yu C-H, Huang Q-L, Du Y-Z. 2019. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnol. 17(1). doi:10.1186/s12951-019-0514-y.
  • Wang WQ, Dong K, Zhou L, Jiao GH, Zhu CZ, Li WW, et al. 2015. IL-37b gene transfer enhances the therapeutic efficacy of mesenchumal stromal cells in DSS-induced colitis mice. Acta Pharmacol Sin. 36(11):1377–1387. doi:10.1038/aps.2015.51.
  • Wang X, Gao J, Ouyang X, Wang J, Sun X, Lv Y. 2018. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy. Int J Nanomedicine. 13:5231–5248. doi:10.2147/ijn.S167142.
  • Wei JN, Cai F, Wang F, Wu XT, Liu L, Hong X, et al. 2016. Transplantation of CXCR4 overexpressed mesenchymal stem cells augments regeneration in degenerated intervertebral discs. DNA Cell Biol. 35(5):241–248. doi:10.1089/dna.2015.3118.
  • Wu HH, Zhou Y, Tabata Y, Gao JQ. 2019. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release. 294:102–113. doi:10.1016/j.jconrel.2018.12.019.
  • Xu C, Feng Q, Yang H, Wang G, Huang L, Bai Q, et al. 2018. A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv Sci (Weinh). 5(10):1800382. doi:10.1002/advs.201800382.
  • Xu CH, Ye PJ, Zhou YC, He DX, Wei H, Yu CY. 2020. Cell membrane-camouflaged nanoparticles as drug carriers for cancer therapy. Acta Biomater. 105:1–14. doi:10.1016/j.actbio.2020.01.036.
  • Xu M, Asghar S, Dai S, Wang Y, Feng S, Jin L, et al. 2019. Mesenchymal stem cells-curcumin loaded chitosan nanoparticles hybrid vectors for tumor-tropic therapy. Int J Biol Macromol. 134:1002–1012. doi:10.1016/j.ijbiomac.2019.04.201.
  • Yang N, Ding Y, Zhang Y, Wang B, Zhao X, Cheng K, et al. 2018. Surface functionalization of polymeric nanoparticles with umbilical cord-derived mesenchymal stem cell membrane for tumor-targeted therapy. ACS Appl Mater Interfaces. 10(27):22963–22973. doi:10.1021/acsami.8b05363.
  • Yao S, Li X, Liu J, Sun Y, Wang Z, Jiang Y. 2017. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv. 24(1):1372–1383. doi:10.1080/10717544.2017.1375580.
  • Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, et al. 2017. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics. 7(10):2575–2592. doi:10.7150/thno.20118.
  • Zhao J, Vykoukal J, Abdelsalam M, Recio-Boiles A, Huang Q, Qiao Y, et al. 2014. Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. Nanotechnology. 25(40):405101. doi:10.1088/0957-4484/25/40/405101.
  • Zheng G, Ge M, Qiu G, Shu Q, Xu J. 2015. Mesenchymal stromal cells affect disease outcomes via macrophage polarization. Stem Cells Int. 2015:989473. doi:10.1155/2015/989473.
  • Zhou F, Teng F, Deng P, Meng N, Song Z, Feng R. 2018. Recent progress of nano-drug delivery system for liver cancer treatment. Anticancer Agents Med Chem. 17(14):1884–1897. doi:10.2174/1871520617666170713151149.
  • Zhou Y, Zhou W, Chen X, Wang Q, Li C, Chen Q, et al. 2020. Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sin B. 10(8):1563–1575. doi:10.1016/j.apsb.2019.11.013.
  • Zhu Q, Ling X, Yang Y, Zhang J, Li Q, Niu X, et al. 2019. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy. Adv Sci (Weinh). 6(6):1801899. doi:10.1002/advs.201801899.