1,741
Views
1
CrossRef citations to date
0
Altmetric
Computational Life Sciences, Bioinformatics and System Biology

QPromoters: sequence based prediction of promoter strength in Saccharomyces cerevisiae

, , , ORCID Icon, , & show all
Article: 2168304 | Received 12 Nov 2021, Accepted 10 Dec 2022, Published online: 20 Jan 2023

References

  • Akan P, Deloukas P. 2008. DNA sequence and structural properties as predictors of human and mouse promoters. Gene. 410:165–176. doi:10.1016/j.gene.2007.12.011.
  • Berg OG, von Hippel PH. 1987. Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters. Journal of Molecular Biology. 193:723–743. doi:10.1016/0022-2836(87)90354-8.
  • Bharanikumar R, Premkumar KAR, Palaniappan A. 2018. PromoterPredict: sequence-based modelling of Escherichia coli sigma(70) promoter strength yields logarithmic dependence between promoter strength and sequence. PeerJ. 6:e5862. doi:10.7717/peerj.5862.
  • Bitter GA, Chang KK, Egan KM. 1991. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Molecular and General Genetics MGG. 231:22–32. doi:10.1007/BF00293817.
  • Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Liu L. 2018. Dceo biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chemical Reviews. 118:4–72. doi:10.1021/acs.chemrev.6b00804.
  • Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, de Hoon MJL. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 25:1422–1423. doi:10.1093/bioinformatics/btp163.
  • Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Research. 14:1188–1190. doi:10.1101/gr.849004.
  • Decoene T, De Maeseneire SL, De Mey M. 2019. Modulating transcription through development of semi-synthetic yeast core promoters. PLOS ONE. 14:e0224476. doi:10.1371/journal.pone.0224476.
  • Dreos R, Ambrosini G, Groux R, Cavin Perier R, Bucher P. 2017. The eukaryotic promoter database in its 30th year: focus on non-vertebrate organisms. Nucleic Acids Research. 45:D51–D55. doi:10.1093/nar/gkw1069.
  • Feng X, Marchisio MA. 2021. Saccharomyces cerevisiae promoter engineering before and during the synthetic biology era. Biology (Basel). 10(6):504. doi:10.3390/biology10060504.
  • Fischer S, Engstler C, Procopio S, Becker T. 2016. EGFP-based evaluation of temperature inducible native promoters of industrial ale yeast by using a high throughput system. LWT - Food Science and Technology. 68:556–562. doi:10.1016/j.lwt.2015.12.020.
  • Gasser B, Steiger MG, Mattanovich D. 2015. Methanol regulated yeast promoters: production vehicles and toolbox for synthetic biology. Microbial Cell Factories. 14:196. doi:10.1186/s12934-015-0387-1.
  • Hayat M, Gul S, Chong KT. 2020. An intelligent computational model for prediction of promoters and their strength via natural language processing. Chemometrics and Intelligent Laboratory Systems. 202:104034. doi:10.1016/j.chemolab.2020.104034.
  • Hubmann G, Thevelein JM, Nevoigt E. 2014. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae. Methods Molecular Biology. 1152:17–42. doi:10.1007/978-1-4939-0563-8_2.
  • Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nature Reviews Genetics. 10:161–172. doi:10.1038/nrg2522.
  • Kanhere A, Bansal M. 2005. Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Research. 33:3165–3175. doi:10.1093/nar/gki627.
  • Kim S, Lee K, Bae SJ, Hahn JS. 2015. Promoters inducible by aromatic amino acids and γ-aminobutyrate (GABA) for metabolic engineering applications in Saccharomyces cerevisiae. oApplied Microbiology and Biotechnology. 99:2705–2714. doi:10.1007/s00253-014-6303-5.
  • Kotopka BJ, Smolke CD. 2020. Model-driven generation of artificial yeast promoters. Nat Commun. 11:2113. doi:10.1038/s41467-020-15977-4.
  • Latimer LN, et al. 2014. Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metabolic Engineering. 25:20–29. doi:10.1016/j.ymben.2014.06.002.
  • Lee ME, DeLoache WC, Cervantes B, Dueber JE. 2015. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synthetic Biology. 4:975–986. doi:10.1021/sb500366v.
  • Li H, Shi L, Gao W, Zhang Z, Zhang L, Zhao Y, Wang G. 2022. dPromoter-XGBoost: Detecting promoters and strength by combining multiple descriptors and feature selection using XGBoost. Methods. 215–222. doi:10.1016/j.ymeth.2022.01.001.
  • Li J, Zhang Y. 2014. Relationship between promoter sequence and its strength in gene expression. The European Physical Journal E. 37:44. doi:10.1140/epje/i2014-14044-y.
  • Liu R, Liu L, Li X, Liu D, Yuan Y. 2020. Engineering yeast artificial core promoter with designated base motifs. Microbial Cell Factories. 19:38. doi:10.1186/s12934-020-01305-4.
  • Lubliner S, et al. 2015. Core promoter sequence in yeast is a major determinant of expression level. Genome Research. 25:1008–1017. doi:10.1101/gr.188193.114.
  • Lubliner S, Keren L, Segal E. 2013. Sequence features of yeast and human core promoters that are predictive of maximal promoter activity. Nucleic Acids Research. 41:5569–5581. doi:10.1093/nar/gkt256.
  • Machens F, Balazadeh S, Mueller-Roeber B, Messerschmidt K. 2017. Synthetic promoters and transcription factors for heterologous protein expression in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology. 5:63. doi:10.3389/fbioe.2017.00063.
  • Miele V, Vaillant C, d'Aubenton-Carafa Y, Thermes C, Grange T. 2008. DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Research. 36:3746–3756. doi:10.1093/nar/gkn262.
  • Nevoigt, E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews. 72:379–412. doi:10.1128/MMBR.00025-07.
  • Ottoz DSM, Rudolf F. 2018. Constitutive and regulated promoters in yeast: how to design and make use of promoters in S. cerevisiae. Synthetic Biology. 107–130. doi:10.1002/9783527688104.ch6.
  • Portela RMC, Vogl T, Kniely C, Fischer JE, Oliveira R, Glieder A. 2017. Synthetic core promoters as universal parts for fine-tuning expression in different yeast species. ACS Synthetic Biology. 6:471–484. doi:10.1021/acssynbio.6b00178.
  • Rajkumar AS, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen MK, Keasling JD. 2016. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research. 44:e136. doi:10.1093/nar/gkw553.
  • Redden H, Morse N, Alper HS. 2015. Editorial: Yeast synthetic biology: new tools to unlock cellular function. FEMS Yeast Research. 15:1–1. doi:10.1111/1567-1364.12188.
  • Rhodius Virgil A, Mutalik Vivek K. 2010. Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE. Proceedings of the National Academy of Sciences. 107:2854–2859. doi:10.1073/pnas.0915066107.
  • Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V. 2012. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metabolic Engineering. 14:91–103. doi:10.1016/j.ymben.2012.01.007.
  • Seabold S, Perktold J. 2010. Statsmodels: econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference 2010.
  • Stewart AJ, Hannenhalli S, Plotkin JB. 2012. Why transcription factor binding sites are ten nucleotides long. Genetics. 192:973–985. doi:10.1534/genetics.112.143370.
  • Struhl K, Segal E. 2013. Determinants of nucleosome positioning. Nature Structural & Molecular Biology. 20:267–273. doi:10.1038/nsmb.2506.
  • Tang H, Wu Y, Deng J, Chen N, Zheng Z, Wei Y, Luo X, Keasling JD, et al. 2020. Promoter architecture and promoter engineering in Saccharomyces cerevisiae. Metabolites. 10:320. doi:10.3390/metabo10080320.
  • Weinhandl K, Winkler M, Glieder A, Camattari A. 2014. Carbon source dependent promoters in yeasts. Microbial Cell Factories. 13:5. doi:10.1186/1475-2859-13-5.
  • West RW Jr., Yocum RR, Ptashne M. 1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Molecular and Cellular Biology. 4:2467–2478. doi:10.1128/mcb.4.11.2467-2478.1984.
  • Workman JL. 2006. Nucleosome displacement in transcription. Genes & Development. 20:2009–2017. doi:10.1101/gad.1435706.
  • Yada T, et al. 2011. Linear regression models predicting strength of transcriptional activity of promoters. Genome Informatics. 25:53–60. doi:10.11234/gi.25.53.
  • Zhao M, Yuan Z, Wu L, Zhou S, Deng Y. 2022. Precise prediction of promoter strength based on a de novo synthetic promoter library coupled with machine learning. ACS Synthetic Biology. 11:92–102. doi:10.1021/acssynbio.1c00117.
  • Zhao M, Zhou S, Wu L, Deng Y. 2020. Model-driven promoter strength prediction based on a fine-tuned synthetic promoter library in Escherichia coli. bioRxiv. doi:10.1101/2020.06.25.170365.
  • Zhou Y, Li G, Dong J, Xing X-h, Dai J, Zhang C. 2018. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metabolic Engineering. 47:294–302. doi:10.1016/j.ymben.2018.03.020.