1,009
Views
1
CrossRef citations to date
0
Altmetric
Agriculture

Proteomic analysis of fetal skin by iTRAQ reveals molecular signals underlying Inner Mongolia Cashmere goat hair follicle initiation

, , , , &
Article: 2169363 | Received 01 Sep 2022, Accepted 08 Jan 2023, Published online: 02 Feb 2023

References

  • Allain D, Renieri C. 2010. Genetics of fibre production and fleece characteristics in small ruminants, Angora rabbit and South American camelids. Animal. 4:1472–1481.
  • Almeida A, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Turk R. 2015. Animal board invited review: advances in proteomics for animal and food sciences. Animal. 9(1):1–17. doi:10.1017/S1751731114002602
  • Flanagan LM, Plowman JE, Bryson WG. 2002. The high sulphur proteins of wool: towards an understanding of sheep breed diversity. Proteomics. 2:1240–1246.
  • Fuchs E. 2007. Scratching the surface of skin development. Nature. 445(7130):834–842.
  • Fuchs E, Raghavan S. 2002. Getting under the skin of epithelial morphogenesis. Nat Rev Genet. 3:199–209.
  • Geng R, Yuan C, Chen Y. 2013. Exploring differentially expressed genes by RNA-Seq in cashmere goat (Capra hircus) skin during hair follicle development and cycling. PLoS One. 8(4):e62704.
  • Giesen M, Gruedl S, Holtkoetter O, Fuhrmann G, Koerner A, Petersohn D. 2011. Ageing processes influence keratin and KAP expression in human hair follicles. Exp Dermatol. 20(9):759–761.
  • Guishan Z. 2016. Screening of mi RNAs and identification of candidate target genes in skin and hair follicle from Liaoning cashmere goat and Qianhua mutton merino. Changchun: Jilin Agricultural University.
  • Han W, Yang F, Wu Z, et al. 2020. Inner Mongolian cashmere goat secondary follicle development regulation research based on mRNA-miRNA Co-analysis. Sci Rep. 10(1):4519.
  • Hardy M. 1992. The secret life of the hair follicle. Trends Genet. 8:55–61.
  • Hubmacher D, Apte SS. 2013. The biology of the extracellular matrix: novel insights. Curr Opin Rheumatol. 25(1):65.
  • Jiang DI, Xu XM, Ainiwaer L, Zhang YH, Tian KC, Yu LJ, Wu WW, Tulafu H, Fu XF, Yasen M. 2014. Genome array on differentially expressed genes of skin tissue in cashmere goat at early anagen of cashmere growth cycle using DNA microarray. J Integr Agric. 13:2243–2252.
  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucl Acid Res. 36:D480–D484.
  • Kaplan ED, Holbrook KA. 1994. Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis. Dev Dyn. 199(2):141–155.
  • Koehn H, Clerens S, Deb-Choudhury S, Morton JD, Dyer JM, Plowman JE. 2009. Higher sequence coverage and improved confidence in the identification of cysteine-rich proteins from the wool cuticle using combined chemical and enzymatic digestion. J Proteomics. 73:323–330.
  • Koehn H, Clerens S, Deb-Choudhury S, Morton JD, Dyer JM, Plowman JE. 2010. The proteome of the wool cuticle. J Proteome Res. 9:2920–2928.
  • Langbein L, Schweizer J. 2005. Keratins of the human hair follicle. Int Rev Cytol. 243:1–78.
  • Li Y, Zhou G, Zhang R, Guo J, Li C, Martin G, Chen Y, Wang X. 2018. Comparative proteomic analyses using iTRAQ-labeling provides insights into fiber diversity in sheep and goats. J Proteomics. 172:82–88.
  • Luczak M, Formanowicz D, Marczak Ł, Suszyńska-Zajczyk J, Pawliczak E, Wanic-Kossowska M, Stobiecki M. 2016 Sep 7. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis. Sci Rep. 6:32511. doi:10.1038/srep32511
  • Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, Li K, Zhang G, Jin Z, He F, Hermjakob H. 2019. Iprox: an integrated proteome resource. Nucl Acid Res. 47:D1211–D1217.
  • Mikkola ML. 2007. Genetic basis of skin appendage development. Semin Cell Dev Biol. 18(2):225–236.
  • Mill P, Mo R, Fu H, Grachtchouk M, Kim PC, Dlugosz AA, Hui CC. 2003. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 17(2):282–294.
  • Millar S. 2002. Molecular mechanisms regulating hair follicle development. J Invest Dermatol. 118:216–225.
  • Moss SE, Morgan RO. 2004. The annexins. Genome Biol. 5(4):219.
  • Ono K, Demchak B, Ideker T. 2014. Cytoscape tools for the web age: D3.js and Cytoscape.js exporters. Version 2. F1000Res. 2014, revised 2014, 3, 143 (2014). eCollection. doi:10.12688/f1000research.4510.2
  • Oura H, Iino M, Nakazawa Y, Tajima M, Ideta R, Nakaya Y, Arase S, Kishimoto J. 2008. Adenosine increases anagen hair growth and thick hairs in Japanese women with female pattern hair loss: apilot, double-blind, randomized, placebo-controlled trial. J Dermatol. 35(12):763–767.
  • Pierce A, Unwin RD, Evans CA, Griffiths S, Carney L, Zhang L, Jaworska E, Lee CF, Blinco D, Okoniewski MJ, et al. 2008. Eight- channel iTRAQ enables comparison of the activity of six leukemogenic tyrosine Kinases. Mol Cell Proteomics. 7(5):853–863.
  • Plasari G, Edelmann S, Hogger F, Dusserre Y, Mermod N, Calabrese A. 2010. Nuclear factor i-c regulates tgf-{beta}-dependent hair follicle cycling. J Biol Chem. 285:34115–34125.
  • Plowman JE, Harland DP, Ganeshan S, Woods JL, van Shaijik B, Deb-Choudhury S, Thomas A, Clerens S, Scobie DR. 2015. The proteomics of wool fibre morphogenesis. J Struct Biol. 191:341–351.
  • Schmidt-Ullrich R, Paus R. 2005. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 27(3):247–261.
  • Schneider M,R, Schmidt-Ullrich R, Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr Biol. 19(3):R132–R142.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11):2498–2504.
  • Wang L, Xu W, Cao L, Tian T, Yang M, Li Z, Ping F, Fan W. 2016. Differential expression of proteins associated with the hair follicle cycle - Proteomics and bioinformatics analyses. PLoS One. 11(1):e0146791. doi:10.1371/journal.pone.0146791
  • Xiaohui T. 2012. The study of expression of miRNAs in wool follicles during different development phase. Wuhan: Huazhong Agricultural University.
  • Xu T, Guo X, Wang H, Hao F, Du X, Gao X, Liu D. 2013. Differential gene expression analysis between anagen and telogen of Capra hircus skin based on the de novo assembled transcriptome sequence. Gene. 520(1):30–38.
  • Zhang H, Zhu NX, Huang K, Cai BZ, Zeng Y, Xu YM, Liu Y, Yuan YP, Lin CM. 2016 Dec 1. iTRAQ-Based quantitative proteomic comparison of early- and late-passage human dermal papilla cell secretome in relation to inducing hair follicle regeneration. PLoS One. 11(12):e0167474. doi:10.1371/journal.pone.0167474
  • Zhang YJ, Yin J, Li JQ, Li CQ. 2007. Study on hair follicle structure and morphogenesis of the inner Mongolian Arbas cashmere goat. Scientia Agricultura Sinica. 40(5):1017–1023.
  • Zhu B, Xu T, Yuan J, Guo X, Liu D. 2013. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the cashmere goat (Capra hircus). PLoS One. 8(9):e76282.