1,630
Views
4
CrossRef citations to date
0
Altmetric
Environmental Toxicology and Health

Chemical screening and mosquitocidal activity of essential oil derived from Mikania scandens (L.) Willd. against Anopheles gambiae Giles and their non-toxicity on mosquito predators

, , , , , , , , ORCID Icon, , ORCID Icon, & show all
Article: 2169959 | Received 26 Dec 2021, Accepted 26 Sep 2022, Published online: 01 Feb 2023

References

  • Amala K, Ganesan R, Kathi S, Senthil-Nathan S, Chellappandian M, Krutmunag P, et al. 2021. Larval and gut enzyme toxicity of n-hexane extract Epaltes pygmaea DC. against the arthropod vectors and its non-toxicity against aquatic predator. Toxin Rev. C40(4):681–691.
  • Amorin M, Paula JPD, Silva RZD, Farago PV, Budel JM. 2014. Pharmaco-botanical study of the leaf and stem of Mikania lanuginosa for its quality control. Revista Brasileira de Farmacognosia. 24(5):531–537.
  • Barlow DJ, et al. 2012. In-silico studies in Chinese herbal medicines’ research: evaluation of in-silico methodologies and phytochemical data sources, and a review of research to date. J Ethnopharmacol. 140:526–534.
  • Bolina RC, et al. 2009. Estudo comparativo da composição química das espécies vegetais Mikania glomerata Sprengel e Mikania laevigata Schultz Bip. ex Baker. Revista Brasileira de Farmacognosia. 19:294–298.
  • Borghi AA, et al. 2019. Damage and drying modify the composition of Mikania glomerata and Mikania laevigata leaves. Revista Brasileira de Farmacognosia. 29:793–797.
  • Centre for Disease Prevention and Control. 2010. Anopheles Mosquitoes. Malaria. [accessed 2019 June 14] https://www.cdc.gov/malaria/about/biology/#tabs-1-5.
  • Chellappandian M, et al. 2018. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environmental Science and Pollution Research. 25(11):10294–10306.
  • Chowdhury JU, et al. 2007. Aromatic plants of Bangladesh: constituents of the leaf and flowers oils of Mikania cordata (Burm.f.) Rob. Indian Perfumer. 51:56–59.
  • Ferreira FP, de Oliveira DCR. 2010. New constituents from mikania laevigata shultz Bip. ex baker. Tetrahedron Lett. 51(52):6856–6859.
  • Ismail BS, Mah LS. 1993. Effects of Mikania micrantha HBK on germination and growth of weed species. Plant Soil. 157:107–113.
  • Jiang RW, et al. 2001. A novel 1: 1 complex of potassium Mikanin-3-O-sulfate with methanol. Chem Pharm Bull. 49(9):1166–1169.
  • Karthi S, Vinothkumar M, Karthic U, Manigandan V, Saravanan R, Vasantha-Srinivasan P, et al. 2020. Biological effects of Avicennia marina (Forssk.) vierh. extracts on physiological, biochemical, and antimicrobial activities against three challenging mosquito vectors and microbial pathogens. Environmental Science and Pollution Research. 27(13):15174–15187.
  • Laurella LC, Cerny N, Bivona AE, et al. 2017. Assessment of sesquiterpene lactones isolated from mikania plants species for their potential efficacy against Trypanosoma cruzi and Leishmania sp. PLoS Negl Trop Dis. 11(9):e0005929.
  • Leeja L., Sulakshana G. N., Vemeethar V., Praniha P., Megha M., Nivedhitha V., Sumi D., Gayathri T. S., Vishnuram S. 2020. Larvicidal Activity and Phytochemical Analysis of Some Selected Plant Extracts Against Filarial Vector Culex Quinquefasciatus Say (Diptera: Culicidae).
  • Lija-Escaline J, Senthil-Nathan S, Thanigaivel A, Pradeepa V, Vasantha-Srinivasan P, Ponsankar A, Edwin ES, Selin-Rani S, Abdel-Megeed A. 2015. Physiological and biochemical effects of botanical extract from Piper nigrum Linn (Piperaceae) against the dengue vector Aedes aegypti Liston (Diptera: Culicidae). Parasitol Res. 114(11):4239–4249.
  • Limberger R, et al. 1998. Chemical composition of essential oils from three southern Brazilian species of Mikania (Asteraceae). J Essent Oil Res. 10(4):363–367.
  • Luz TRSA, de Mesquita LSS, do Amaral FMM, Coutinho DF. 2020. Essential oils and their chemical constituents against Aedes aegypti L. (Diptera: Culicidae) larvae. Acta Trop. 212:105705.
  • Moreira MR, et al. 2016. ent-Kaurenoic acid-rich extract from Mikania glomerata: In vitro activity against bacteria responsible for dental caries. Fitoterapia. 112:211–216.
  • Oliveira PA, Turatti ICC, Oliveira DCO. 2006. Comparative analysis of triterpenoids from Mikania cordifolia collected from four different locations. Revista Brasileira de Ciências Farmacêuticas. 42:547–552.
  • Pavela R. 2015. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind Crops Prod. 76:174–187.
  • Pavela R, Maggi F, Iannarelli R, Benelli G. 2019. Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop. 193:236–271.
  • Pedroso ADD, Sheila AAS, Santos F, Deschamps A, Barison F, Campos MW, Biavatti MW. 2008. Isolation of syringaldehyde from Mikania laevigata medicinal extract and its influence on the fatty acid profile of mice. Revista Brasileira de Farmacognosia. 18(1):63–69.
  • Prachayasittikul V, et al. 2015. Computer-aided drug design of bioactive natural products. Curr Top Med Chem. 15:1780–1800.
  • Pradeepa V, Sathish-Narayanan S, Kirubakaran SA, Thanigaivel A, Senthil-Nathan S. 2015. Toxicity of aristolochic acids isolated from Aristolochia indica Linn (Aristolochiaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Exp Parasitol. 153:8–16.
  • Pradeepa V, Senthil-Nathan S, Sathish-Narayanan S, Selin-Rani S, Vasantha-Srinivasan P, Thanigaivel A, Ponsankar A, Edwin ES, Sakthi-Bagavathy M, Kalaivani K, Murugan K. 2016. Potential mode of action of a novel plumbagin as a mosquito repellent against the malarial vector Anopheles stephensi,(Culicidae: Diptera). Pestic Biochem Physiol. 1134:84–93.
  • Regnault-Roger C, Vincent C, Arnason JT. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. 57:405–424.
  • Rufatto LC, Finimundy TC, Roesch-Ely M, Moura S. 2013. Mikania laevigata: chemical characterization and selective cytotoxic activity of extracts on tumor cell lines. Phytomedicine. 20(10):883–889.
  • Rufatto LC, Gower A, Schwambach J, Moura S. 2012. Genus Mikania: chemical composition and phytotherapeutical activity. Revista Brasileira de Farmacognosia. 22(6):1384–1403.
  • Samsulrizal N, Suhaimi NA, Sopian NFA, Hatta SKM, Jamil NM. 2013. Hypoglycaemic, antioxidant and wound healing activities of Mikania micrantha leaves extract in normal and alloxan-induced diabetic rats. Focus Scope. 7:6–10.
  • Santos SC, et al. 2006. Lc characterisation of guaco medicinal extracts, Mikania laevigata and M. glomerata, and their effects on allergic pneumonitis. Planta Med. 72(08):679–684.
  • Selin-Rani S, Senthil-Nathan S, Thanigaivel A, et al. 2016. Toxicity and physiological effect of quercetin on generalist herbivore, Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Chemosphere. 165:257–267.
  • Senthil-Nathan S, et al. 2005. Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop. 96:47–55.
  • Senthil-Nathan S. 2013. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front Physiol. 4(359):1–17.
  • Senthil-Nathan S. 2015. A review of bio pesticides and their mode of action against insect pests. In: Environmental sustainability- role of green technologies. Springer-Verlag, India.; p. 49–63.
  • Senthil-Nathan S. 2020. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front. Physiol. 1591:1–21. https://www.frontiersin.org/articles/10.3389/fphys.2019.01591/full.
  • Senthil-Nathan S, Choi MY, Paik CH, Seo HY. 2007. Food consumption, utilization, and detoxification enzyme activity of the rice leaffolder larvae after treatment with Dysoxylum triterpenes. Pestic Biochem Physiol. 88(3):260–267.
  • Siddiqui SA, Islam R, Islam R, Jamal AHM, Parvin T, Rahman A. 2017. Chemical composition and antifungal properties of the essential oil and various extracts of Mikania scandens (L.) Willd. Arabian Journal of Chemistry. 10:S2170–S2174.
  • Snedecor G. W., Cochran W. G. 1989. Statistical Methods. 8th edition. Ames, IA: Iowa State University Press.
  • Thanigaivel A, et al. 2017. Chemicals isolated from Justicia adhatoda Linn reduce fitness of the mosquito. Arch Insect Biochem Physiol. 94(4):e21384.
  • Vasantha-Srinivasan P., Senthil-Nathan S., Ponsankar A., Thanigaivel A., Chellappandian M., Edwin E. S., Selin-Rani S., Kalaivani K., Hunter W. B., Duraipandiyan V., Al-Dhabi N. A. 2018. Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environmental science and pollution research. 25(11):10371–10382.
  • Vasantha-Srinivasan P., Senthil-Nathan S., Ponsankar A., Thanigaivel A., Edwin E. S., Selin-Rani S., Chellappandian M., Pradeepa V., Lija-Escaline J., Kalaivani K., Hunter W. B. 2017. Comparative analysis of mosquito (Diptera: Culicidae: Aedes aegypti Liston) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicology and environmental safety. 139:439–446.
  • Vasantha-Srinivasan P, et al. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Environ Sci Pollut Res. 25:10434–10446.
  • Vidal LHI, et al. 2006. Qualidade de mudas de guaco produzidas por estaquia em casca de arroz carbonizada com vermicomposto. Horticultura Brasileira. 24:26–30.
  • Wei X, Huang H, Wu P, Cao H, Ye W. 2004. Biochem Syst Ecol. 32:1091–1096.
  • World Health Organization. 2018. World malaria report. Geneva.: World Health Organization.
  • Yogarajalakshmi P, Poonguzhali TN, Ganesan R, Karthi S, Senthil-Nathan S. et al. 2020. Toxicological screening of marine red algae Champia parvula (C. Agardh) against the dengue mosquito vector Aedes aegypti (Linn.) and its non-toxicity against three beneficial aquatic predators. Aquat Toxicol 222: 105474.