2,436
Views
0
CrossRef citations to date
0
Altmetric
Biochemistry, Cell and Molecular Biology

Reviewing the mechanism of propofol addiction

, , , , &
Article: 2174708 | Received 19 Sep 2022, Accepted 09 Jan 2023, Published online: 06 Feb 2023

References

  • Abu Baker F, Mari A, Aamarney K, Ras Hakeem A, Ovadia B, Kopelman Y. 2019. Propofol sedation in colonoscopy: from satisfied patients to improved quality indicators. Clin Exp Gastroenterol. 12:105–110. doi:10.2147/CEG.S186393.
  • Al-Attraqchi OHA, Attimarad M, Venugopala KN, Nair A, Al-Attraqchi NHA. 2019. Adenosine A2A receptor as a potential drug target – current status and future perspectives. Curr Pharm Des. 25:2716–2740. doi:10.2174/1381612825666190716113444.
  • Arias SA, Cohen P, Kwon JS. 2011. Clozapine-induced lymphocytic alveolitis. Am J Psychiatry. 168:210–211. doi:10.1176/appi.ajp.2010.10101494.
  • Bale TL, Vale WW. 2004. CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol. 44:525–557. doi:10.1146/annurev.pharmtox.44.101802.121410.
  • Berglind WJ, Whitfield TW, Jr., LaLumiere RT, Kalivas PW, McGinty JF. 2009. A single intra-PFC infusion of BDNF prevents cocaine-induced alterations in extracellular glutamate within the nucleus accumbens. J Neurosci. 29:3715–3719. doi:10.1523/JNEUROSCI.5457-08.2009.
  • Bhatt K, Kumar A. 2015. Mechanism of morphine addiction by inhibiting the soluble Guanylate Cyclase–Nitric Oxide (sGC–NO) pathway. Math Biosci. 266:85–92. doi:10.1016/j.mbs.2015.06.004.
  • Bonnet U, Scherbaum N. 2012. Craving dominates propofol addiction of an affected physician. J Psychoactive Drugs. 44:186–190. doi:10.1080/02791072.2012.684635.
  • Bormann J, Feigenspan A. 1995. GABAc receptors. Trends Neurosci. 18:515–519. doi:10.1016/0166-2236(95)98370-E.
  • Brechmann T, Maier C, Kaisler M, Vollert J, Schmiegel W, Pak S, et al. 2018. Propofol sedation during gastrointestinal endoscopy arouses euphoria in a large subset of patients. United European Gastroenterol J. 6:536–546. doi:10.1177/2050640617736231.
  • Camí J, Farré M. 2003. Drug addiction. N Engl J Med. 349:975–986. doi:10.1056/NEJMra023160.
  • Chen BP, Huang XX, Dong DM, Wu H, Zhu TQ, Wang BF. 2020. The role of NMDA receptors in rat propofol self-administration. BMC Anesthesiol. 20:149. doi:10.1186/s12871-020-01056-0.
  • Chen H, Xu D, Zhang Y, Yan Y, Liu J, Liu C, et al. 2021. Neurons in the locus coeruleus modulate the hedonic effects of sub-anesthetic dose of propofol. Front Neurosci. 15:636901. doi:10.3389/fnins.2021.636901.
  • Corbillé AG, Valjent E, Marsicano G, Ledent C, Lutz B, Hervé D, et al. 2007. Role of cannabinoid type 1 receptors in locomotor activity and striatal signaling in response to psychostimulants. J Neurosci. 27:6937–6947. doi:10.1523/JNEUROSCI.3936-06.2007.
  • Deroche-Gamonet V, Sillaber I, Aouizerate B, Izawa R, Jaber M, Ghozland S, et al. 2003. The glucocorticoid receptor as a potential target to reduce cocaine abuse. J Neurosci. 23:4785–4790. doi:10.1523/JNEUROSCI.23-11-04785.2003.
  • Diaz JH, Kaye AD. 2017. Death by propofol. J La State Med Soc. 169:28–32.
  • Dong Z, Han H, Wang M, Xu L, Hao W, Cao J. 2006. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens. Hippocampus. 16:809–813. doi:10.1002/hipo.20216.
  • Dong Z, Huang B, Jiang C, Chen J, Lin H, Lian Q, et al. 2021a. The adenosine A2a receptor activation in nucleus accumbens suppress cue-induced reinstatement of propofol self-administration in rats. Neurochem Res. 46:1081–1091. doi:10.1007/s11064-021-03238-9.
  • Dong Z, Zhang G, Xiang S, Jiang C, Chen Z, Li Y, et al. 2021b. The antagonism of corticotropin-releasing factor receptor-1 in brain suppress stress-induced propofol self-administration in rats. Front Behav Neurosci. 15:775209. doi:10.3389/fnbeh.2021.775209.
  • Du WJ, Zhang RW, Li J, Zhang BB, Peng XL, Cao S, et al. 2018. The locus coeruleus modulates intravenous general anesthesia of zebrafish via a cooperative mechanism. Cell Rep. 24:3146–3155.e3. doi:10.1016/j.celrep.2018.08.046.
  • Eliot LG. 2011. Addiction and brain reward and antireward pathways. Adv Psychosom Med. 30:22–60. doi:10.1159/000324065.
  • Follette JW, Farley WJ. 1992. Anesthesiologist addicted to propofol. Anesthesiology. 77:817–818. doi:10.1097/00000542-199210000-00028.
  • Haitsma JJ, Lachmann B, Papadakos PJ. 2009. Additives in intravenous anesthesia modulate pulmonary inflammation in a model of LPS-induced respiratory distress. Acta Anaesthesiol Scand. 53:176–182. doi:10.1111/j.1399-6576.2008.01844.x.
  • Han E, Jung S, Baeck S, Lee S, Chung H. 2013. Deaths from recreational use of propofol in Korea. Forensic Sci Int. 233:333–337. doi:10.1016/j.forsciint.2013.10.008.
  • Havekes R, Heckman PRA, Wams EJ, Stasiukonyte N, Meerlo P, Eisel ULM. 2019. Alzheimer’s disease pathogenesis: The role of disturbed sleep in attenuated brain plasticity and neurodegenerative processes. Cell Signal. 64:109420. doi:10.1016/j.cellsig.2019.109420.
  • Higgins GA, Nguyen P, Sellers EM. 1992. The NMDA antagonist dizocilpine (MK801) attenuates motivational as well as somatic aspects of naloxone precipitated opioid withdrawal. Life Sci. 50:PL167–PL172. doi:10.1016/0024-3205(92)90452-U.
  • Jameie SB, Mesgar S, Aliaghaei A, Raoofi A, Amini M, Khodagholi F, et al. 2019. Neuroprotective effect of exogenous melatonin on the noradrenergic neurons of adult male rats’ locus coeruleus nucleus following REM sleep deprivation. J Chem Neuroanat. 100:101656. doi:10.1016/j.jchemneu.2019.101656.
  • Kim EJ, Kim SH, Hyun YJ, Noh YK, Jung HS, Han SY, et al. 2015. Clinical and psychological characteristics of propofol abusers in Korea: A survey of propofol abuse in 38, non-healthcare professionals. Korean J Anesthesiol. 68:586–593. doi:10.4097/kjae.2015.68.6.586.
  • Köroğlu G, Tezcan AH. 2015. A case report of the first propofol addiction in Turkey. Turk J Anesthesiol Reanim. 43:434–436. doi:10.5152/TJAR.2015.54872.
  • Kumar K, Sharma S, Kumar P, Deshmukh R. 2013. Therapeutic potential of GABAB receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav. 110:174–184. doi:10.1016/j.pbb.2013.07.003.
  • Lee J. 2012. Propofol abuse in professionals. J Korean Med Sci. 27:1451–1452. doi:10.3346/jkms.2012.27.12.1451.
  • Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J. 2017. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother. 86:324–333. doi:10.1016/j.biopha.2016.12.036.
  • Li J, Li J, Liu X, Qin S, Guan Y, Liu Y, et al. 2013. MicroRNA expression profile and functional analysis reveal that miR-382 is a critical novel gene of alcohol addiction. EMBO Mol Med. 5:1402–1414. doi:10.1002/emmm.201201900.
  • Li KY, Xiao C, Xiong M, Delphin E, Ye JH. 2008. Nanomolar propofol stimulates glutamate transmission to dopamine neurons: a possible mechanism of abuse potential? J Pharmacol Exp Ther. 325:165–174. doi:10.1124/jpet.107.132472.
  • Lian Q, Wang B, Zhou W, Jin S, Xu L, Huang Q, et al. 2013. Self-administration of propofol is mediated by dopamine D1 receptors in nucleus accumbens in rats. Neuroscience. 231:373–383. doi:10.1016/j.neuroscience.2012.11.002.
  • Linker KE, Gad M, Tawadrous P, Cano M, Green KN, Wood MA, et al. 2020. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 11:306. doi:10.1038/s41467-019-14173-3.
  • Liu Y, Lin D, Wu B, Zhou W. 2016. Ketamine abuse potential and use disorder. Brain Res Bull. 126:68–73. doi:10.1016/j.brainresbull.2016.05.016.
  • Mahler SV, Vazey EM, Beckley JT, Keistler CR, McGlinchey EM, Kaufling J, et al. 2014. Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. Nat Neurosci. 17:577–585. doi:10.1038/nn.3664.
  • Maier C, Iwunna J, Tsokos M, Mußhoff F. 2017. Deaths from propofol abuse: survey of institutes of forensic medicine in Germany, Austria and Switzerland. Anaesthesist. 66:109–114. doi:10.1007/s00101-016-0260-6.
  • Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R, et al. 2009. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci. 12:1036–1041. doi:10.1038/nn.2367.
  • Margolis EB, Toy B, Himmels P, Morales M, Fields HL. 2012. Identification of rat ventral tegmental area GABAergic neurons. PLOS ONE. 7:e42365. doi:10.1371/journal.pone.0042365.
  • McAuliffe PF, Gold MS, Bajpai L, Merves ML, Frost-Pineda K, Pomm RM, et al. 2006. Second-hand exposure to aerosolized intravenous anesthetics propofol and fentanyl may cause sensitization and subsequent opiate addiction among anesthesiologists and surgeons. Med Hypotheses. 66:874–882. doi:10.1016/j.mehy.2005.10.030.
  • McCutcheon JE, Wang X, Tseng KY, Wolf ME, Marinelli M. 2011. Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J Neurosci. 31:5737–5743. doi:10.1523/JNEUROSCI.0350-11.2011.
  • Merlo LJ, Goldberger BA, Kolodner D, Fitzgerald K, Gold MS. 2008. Fentanyl and propofol exposure in the operating room: sensitization hypotheses and further data. J Addict Dis. 27:67–76. doi:10.1080/10550880802122661.
  • Monroe T, Hamza H, Stocks G, Scimeca PD, Cowan R. 2011. The misuse and abuse of propofol. Subst Use Misuse. 46:1199–1205. doi:10.3109/10826084.2011.564705.
  • Morisot N, Ron D. 2017. Alcohol-dependent molecular adaptations of the NMDA receptor system. Genes Brain Behav. 16:139–148. doi:10.1111/gbb.12363.
  • Nathan L, Charles JM. 2019. Extracellular Signal-Regulated Kinase: a regulator of cell growth, inflammation, chondrocyte and bone cell receptor-mediated gene expression. Int J Mol Sci. 20:3792. doi:10.3390/ijms20153792.
  • Nestler EJ, Barrot M, Self DW. 2001. Δfosb: A sustained molecular switch for addiction. Proc Natl Acad Sci USA. 98:11042–11046. doi:10.1073/pnas.191352698.
  • Nestler EJ, Carlezon WA, Jr. 2006. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 59:1151–1159. doi:10.1016/j.biopsych.2005.09.018
  • Nguyen C, Mondoloni S, Le Borgne T, Centeno I, Come M, Jehl J, et al. 2021. Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron. 109:2604–2615.e9. doi:10.1016/j.neuron.2021.06.013.
  • Rambali B, Vleeming W, Opperhuizen A. 2002. The role of nitric oxide in cigarette smoking and nicotine addiction. Nicotine Tob Res. 4:341–348. doi:10.1080/14622200210142724.
  • Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, et al. 2019. Adenosine and the cardiovascular system. Am J Cardiovasc Drugs. 19:449–464. doi:10.1007/s40256-019-00345-5.
  • Robbins RA, Grisham MB. 1997. Nitric oxide. Int J Biochem Cell Biol. 29:857–860. doi:10.1016/S1357-2725(96)00167-7.
  • Sahinovic MM, Struys MMRF, Absalom AR. 2018. Clinical pharmacokinetics and pharmacodynamics of propofol. Clin Pharmacokinet. 57:1539–1558. doi:10.1007/s40262-018-0672-3.
  • Schenk S, Valadez A, Worley CM, McNamara C. 1993. Blockade of the acquisition of cocaine self-administration by the NMDA antagonist MK-801 (dizocilpine). Behav Pharmacol. 4:652–659. doi:10.1097/00008877-199312000-00011.
  • Seif T, Makriyannis A, Kunos G, Bonci A, Hopf FW. 2011. The endocannabinoid 2-arachidonoylglycerol mediates D1 and D2 receptor cooperative enhancement of rat nucleus accumbens core neuron firing. Neuroscience. 193:21–33. doi:10.1016/j.neuroscience.2011.07.055.
  • Shahzadi A, Uskur T, Akkan AG, Çevreli B, Uzbay T. 2018. Effects of propofol on conditioned place preference in male rats: involvement of nitrergic system. Am J Drug Alcohol Abuse. 44:167–174. doi:10.1080/00952990.2017.1344681.
  • Sinha R, Jastreboff AM. 2013. Stress as a common risk factor for obesity and addiction. Biol Psychiatry. 73:827–835. doi:10.1016/j.biopsych.2013.01.032.
  • Stefanik MT, Kupchik YM, Brown RM, Kalivas PW. 2013. Optogenetic evidence that pallidal projections, not nigral projections, from the nucleus accumbens core are necessary for reinstating cocaine seeking. J Neurosci. 33:13654–13662. doi:10.1523/JNEUROSCI.1570-13.2013.
  • Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. 2017. GABAA receptor subtype involvement in addictive behaviour. Genes Brain Behav. 16:149–184. doi:10.1111/gbb.12321.
  • Stocks G. 2011. Abuse of propofol by anesthesia providers: The case for re-classification as a controlled substance. J Addict Nurs. 22:57–62. doi:10.3109/10884602.2010.545091.
  • Takizawa D, Sato E, Hiraoka H, Tomioka A, Yamamoto K, Horiuchi R, et al. 2005. Changes in apparent systemic clearance of propofol during transplantation of living related donor liver. Br J Anaesth. 95:643–647. doi:10.1093/bja/aei243.
  • Tekeli AE, Oğuz AK, TunÇdemir YE, Almali N. 2020. Comparison of dexmedetomidine-propofol and ketamine-propofol administration during sedation-guided upper gastrointestinal system endoscopy. Medicine (Baltimore). 99:e23317. doi:10.1097/MD.0000000000023317.
  • Valjent E, Pagès C, Hervé D, Girault JA, Caboche J. 2004. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci. 19:1826–1836. doi:10.1111/j.1460-9568.2004.03278.x.
  • Walsh PD, Abernethy KA, Bermejo M, Beyers R, De Wachter P, Akou ME, et al. 2003. Catastrophic ape decline in western equatorial Africa. Nature. 422:611–614. doi:10.1038/nature01566.
  • Wang B, Lv K, Liu H, Su Y, Wang H, Wang S, et al. 2018a. Contribution of the α5 GABAA receptor to the discriminative stimulus effects of propofol in rat. NeuroReport. 29:347–352. doi:10.1097/WNR.0000000000000959.
  • Wang B, Yang X, Sun A, Xu L, Wang S, Lin W, et al. 2016. Extracellular signal-regulated kinase in nucleus accumbens mediates propofol self-administration in rats. Neurosci Bull. 32:531–537. doi:10.1007/s12264-016-0066-1.
  • Wang S, Wang X, Lin W, Bao S, Wang B, Wu B, et al. 2018b. Dopamine D1 receptor within basolateral amygdala is involved in propofol relapse behavior induced by cues. Neurochem Res. 43:2393–2403. doi:10.1007/s11064-018-2667-8.
  • Wang Y, Tian D, Wei C, Cui V, Wang H, Zhu Y, et al. 2020. Propofol attenuates α-synuclein aggregation and neuronal damage in a mouse model of ischemic stroke. Neurosci Bull. 36:289–298. doi:10.1007/s12264-019-00426-0.
  • Wen D, Hui R, Liu Y, Luo Y, Wang J, Shen X, et al. 2020. Molecular hydrogen attenuates methamphetamine-induced behavioral sensitization and activation of ERK-ΔFosB signaling in the mouse nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry. 97:109781. doi:10.1016/j.pnpbp.2019.109781.
  • Wilson C, Canning P, Caravati EM. 2010. The abuse potential of propofol. Clin Toxicol (Phila). 48:165–170. doi:10.3109/15563651003757954.
  • Wu B, Liang Y, Dong Z, Chen Z, Zhang G, Lin W, et al. 2016. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens. Neuroscience. 328:184–193. doi:10.1016/j.neuroscience.2016.04.029.
  • Wu B, Lin W, Wang H, Abdullah T, Wang B, Su Y, et al. 2018. Glucocorticoid receptor in rat nucleus accumbens: Its roles in propofol addictions. Neurosci Lett. 662:115–121. doi:10.1016/j.neulet.2017.10.011.
  • Xiong M, Li J, Ye JH, Zhang C. 2011. Upregulation of DeltaFosB by propofol in rat nucleus accumbens. Anesth Analg. 113:259–264. doi:10.1213/ANE.0b013e318222af17.
  • Yang B, Wang BF, Lai MJ, Zhang FQ, Yang XW, Zhou WH, et al. 2011. Differential involvement of GABAA and GABAB receptors in propofol self-administration in rats. Acta Pharmacol Sin. 32:1460–1465. doi:10.1038/aps.2011.123.
  • Zacny JP, Lichtor JL, Thompson W, Apfelbaum JL. 1993a. Propofol at a subanesthetic dose may have abuse potential in healthy volunteers. Anesth Analg. 77:544–552. doi:10.1213/00000539-199309000-00020.
  • Zacny JP, Lichtor JL, Zaragoza JG, Coalson DW, Uitvlugt AM, Flemming DC, et al. 1993b. Assessing the behavioral effects and abuse potential of propofol bolus injections in healthy volunteers. Drug Alcohol Depend. 32:45–57. doi:10.1016/0376-8716(93)90021-H.
  • Zeng J, Li YK, Quan FF, Zeng X, Chen CY, Zeng T. 2020. Propofol-induced miR-125a-5p inhibits the proliferation and metastasis of ovarian cancer by suppressing LIN28B. Mol Med Rep. 22:1507–1517. doi:10.3892/mmr.2020.11223.
  • Zhang YF, Li CS, Zhou Y, Lu XH. 2020. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppressing autophagy in gastric cancer. Life Sci. 244:117280. doi:10.1016/j.lfs.2020.117280.
  • Zhou Y, Qiu Y. 2019. Propofol alleviates cisplatin-related cognitive impairment. Neurol Sci. 40:1645–1649. doi:10.1007/s10072-019-03895-3.