1,677
Views
0
CrossRef citations to date
0
Altmetric
Agriculture

Scope and present status of rearing edible insects for animal feeding in Africa

, , &
Article: 2206542 | Received 21 Jul 2022, Accepted 20 Mar 2023, Published online: 05 May 2023

References

  • Abdullahi N, Igwe EC, Dandago MA, Yunusa AK. 2021. Consumption of edible-insects: The challenges and the prospects. Food ScienTech J. 3(1):1–24. doi:10.33512/fsj.v3i1.10468.
  • Adegboye ARA, Bawa M, Keith R, Twefik S, Tewfik I. 2021. Edible insects: sustainable nutrient-rich foods to tackle food insecurity and malnutrition. World Nutri. 12(4):176–189. doi:10.26596/wn.2021124176-189.
  • Adli DN. 2021. Uses insects in poultry feed as replacement soya bean meal and fish meal in development countries: a systematic review. LRRD. 33(128) Available from: http://www.lrrd.org/lrrd33/10/33128danun.html
  • Ajayi OE. 2012. Biochemical analyses and nutritional content of four castes of subterranean termites, macrotermes subhyalinus (rambur) (isoptera: termitidae): differences in digestibility and anti-nutrient contents among castes. Int J Biology. 4(4):54–59. doi:10.5539/ijb.v4n4p54.
  • Akpalu W, Muchapondwa E, Zikhali P. 2009. Can the restrictive harvest period policy conserve mopane worms in southern Africa? A bioeconomic modelling approach. Environ Dev Econ. 14(5):587–600. doi:10.1017/S1355770X0900518X.
  • Akullo J, Agea JG, Obaa BB, Okwee-Acai J. 2018. Nakimbugwe D nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. Int Food Res J. 25(1):159–165. Available from: http://www.ifrj.upm.edu.my/.
  • Alfaro AO, Núñez WL, Marcia J, Fernández IM. 2019. The cricket (Gryllus assimilis) as an alternative food versus commercial concentrate for tilapia (Oreochromis sp.) in the nursery stage. J Agric Sci. 11(6):97. doi:10.5539/jas.v11n6p97.
  • Anankware JP, Roberts BJ, Cheseto X, Osuga I, Savolainen V, Collins CM. 2021. The nutritional profiles of five important edible insect species from West Africa—An analytical and literature synthesis. Front Nutr. 8:792–941. doi:10.3389/fnut.2021.792941.
  • Antony Jesu Prabhu P, Schrama JW., Kaushik SJ. 2016. Mineral requirements of fish: a systematic review. Reviews in Aquaculture. 8(2):172–219. http://doi.org/10.1111/raq.2016.8.issue-2.
  • Ayieko IA, Onyango M, Ngadze RT, Ayieko MA. 2021. Edible insects as New food Frontier in the hospitality industry. Front Sustain Food Syst. 5:325. doi:10.3389/fsufs.2021.693990.
  • Babarinde SA, Mvumi BM, Babarinde GO, Manditsera FA, Akande TO, Adepoju AA. 2021. Insects in food and feed systems in sub-saharan Africa: the untapped potentials. Int J Trop Insect Sci. 41(3):1923–1951. doi:10.1007/s42690-020-00305-6.
  • Bauserman M, Lokangaka A, Gado J. 2015. A cluster-randomized trial determining the efficacy of caterpillar cereal as a locally available and sustainable complementary food to prevent stunting and anaemia. Public Health Nutr. 18(10):1785–1792. doi:10.1017/S1368980014003334.
  • Biancarosa I, Sele V, Belghit I, Ørnsrud R, Lock EJ, Amlund H. 2019. Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Addit Contam: Part A. 36(8):1191–1205. doi:10.1080/19440049.2019.1619938.
  • Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia YA, Nizza A. 2015. Yellow mealworm larvae (Tenebrio molitor, Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br Poult Sci. 56(5):1–7. doi:10.1080/00071668.2015.1080815.
  • DiGiacomo K, Leury BJ. 2019. Review: insect meal: a future source of protein feed for pigs? Animal. 13(12):3022–3030. doi:10.1017/S1751731119001873.
  • Dobermann D, Swift JA, Field LM. 2017. Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin. 42:293–308. doi:10.1111/nbu.12291.
  • Dürr J, Ratompoarison C. 2021. Nature’s “free lunch”: The contribution of edible insects to food and nutrition security in the central highlands of Madagascar. Foods10(12):2978. doi:10.3390/foods10122978.
  • Dzerefos CM, Witkowski ETF, Toms R. 2013. Comparative ethnoentomology of edible stinkbugs in Southern Africa and sustainable management considerations. J Ethnobiol Ethnomed. 9:20. Available from: http://www.ethnobiomed.com/content/9/1/20.
  • Egan BA. 2013. Culturally and economically significant insects in the Blouberg region, Limpopo province, South Africa [doctoral dissertation]. University of Limpopo).
  • Egan BA, Toms R, Minter LR, Addo-Bediako A, Masoko P. 2014. Nutritional significance of the edible insect, hemijana variegata rothschild (lepidoptera: eupterotidae), of the Blouberg region, Limpopo, South Africa. Afr Entomol. 22(1):15–23. doi:10.4001/003.022.0108.
  • Egonyu JP, Subramanian S, Tanga CM, Dubois T., Ekesi S, Kelemu S. 2021. Global overview of locusts as food, feed and other uses. Global Food Security. 31:100574. doi:10.1016/j.gfs.2021.100574.
  • Elahi U, Xu C, Wang J. 2022. Insect meal as a feed ingredient for poultry. Animl Biosci. 35(2):332–346. doi:https://doi.org/10.5713/ab.21.0435.
  • FAO. 2013. Edible insects – future prospects for food and feed security. FAO Forestry Paper 171, IX. Rome: 2013. Available from: https://library.wur.nl/WebQuery/wurpubs/fulltext/258042.
  • FAO Regional Office for Asia and the Pacific. 2010. Forest insects as food: humans bite back: proceedings of a workshop on Asia-pacific resources and their potential for development, 19–21 February 2008, Chiang Mai, Thailand. (P. B. Durst,). Bangkok, Thailand: Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific.
  • Fisher HJ, Collins SA, Hanson C, Mason B, Colombo SM, Anderson DM. 2020. Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture. 521:734978–734978. doi:10.1016/j.aquaculture.2020.734978.
  • Fombong FT, Kinyuru J, Ng’ang’a J, Ayieko M, Tanga CM, Vanden Broeck J, Van Der Borght M. 2021. Affordable processing of edible orthopterans provides a highly nutritive source of food ingredients. Foods. 10(1):144. doi:10.3390/foods10010144.
  • Fombong FT, Kinyuru JN. 2018. Termites as food in Africa. In: Khan M, Ahmad W, editors. Termites and sustainable management. Sustainability in plant and crop protection. Cham: Springer.
  • Freccia A, Tubin JSB, Rombenso AN, Emerenciano MGC. 2020. Insects in aquaculture nutrition: an emerging eco-friendly approach or commercial reality?. In: Lu Q, Serajuddin M, editors. Emerging technologies, environment and research for sustainable aquaculture. London: IntechOpen; p. 1–14. doi:10.5772/intechopen.90489
  • Goumperis T. 2019. Insects as food: risk assessment and their future perspective in Europe. In: Sogari G, Mora C, Menozzi D, editors. Edible insects in the food sector. Cham: Springer Nature Switzerland; p. 1–9. doi:10.1007/978-3-030-22522-3_1.
  • Govorushko S. 2019. Global status of insects as food and feed source: A review. Trends Food Sci Technol. 91:436–445. doi:10.1016/j.tifs.2019.07.032.
  • Grabowski NT, Tchibozo S, Abdulmawjood A, Acheuk F, M’Saad Guerfali M, Sayed WA, Plötz M. 2020. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation. Foods. 9(4):502. doi:10.3390/foods9040502.
  • Halloran A, Hanboonsong Y, Roos N, Bruun S. 2017. Life cycle assessment of cricket farming in north-eastern Thailand. J Cleaner Prod. 156:83–94. doi:10.1016/j.jclepro.2017.04.017.
  • Hendriks S., Mabuza N., Hendriks K., Olivier N. J., Makhura M., Mkandawire E., Vilakazi N. 2018. An Evaluation of the Level of Integration and Alignment of the Malabo Commitments (No. 1879-2018-7723). doi:10.22004/ag.econ.279855.
  • Henry M, Gasco L, Piccolo G, Fountoulaki E. 2015. Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol. 203:1–22. doi:10.1016/j.anifeedsci.2015.03.001.
  • Hermans WJ, Senden JM, Churchward-Venne TA, Paulussen KJ, Fuchs CJ, Smeets JS, van Loon JJ, Verdijk LB, van Loon LJ, et al. 2021. Insects are a viable protein source for human consumption: from insect protein digestion to postprandial muscle protein synthesis in vivo in humans: A double-blind randomized trial. Am J Clin Nutr. 114(3):934–944. doi:10.1093/ajcn/nqab115.
  • Hlongwane ZT, Slotow R, Munyai TC. 2021. Indigenous knowledge about consumption of edible insects in South Africa. Insects. 12(1):22. doi:10.3390/insects12010022.
  • Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S. 2015. African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insect Food Feed. 1:103–119. doi:10.3920/JIFF2014.0016.
  • Kewuyemi YO, Kesa H, Chinma CE, Adebo OA. 2020 Fermented edible insects for promoting food security in Africa. Insects. 11:283. doi:10.3390/insects11050283.
  • Khalil RM. 2018. Locust (Schistocerca gregaria) as an alternative source of protein compared with other conventional protein sources [doctoral dissertation]. Khartoum: Sudan University of Science and Technology.
  • Khan HS. 2018. Recent advances in role of insects as alternative protein source in poultry nutrition. J Appl Anim Res. 46(1):1144–1157. doi:10.1080/09712119.2018.1474743.
  • Kim T, Yong HI, Kim Y, Kim H, Choi Y. 2019. Edible insects as a protein source: A review of public perception,processing technology, and research trends. Food Sci Anim Resour. 39(4):521–540. doi:10.5851/kosfa.2019.e53.
  • Kuntadi K, Adalina Y, Maharani KE. 2018. Nutritional compositions of six edible insects in Java. Indonesian J For Res. 5(1):57–68. doi:10.20886/ijfr.2018.5.1.57-68.
  • Lalman D, Richards C. 2017. Nutrient requirements of beef cattle. Oklahoma Cooperative Extension Service.
  • Lange KW, Nakamura Y. 2021. Edible insects as future food: chances and challenges. J Future Foods. 1(1):38–46. doi:10.1016/j.jfutfo.2021.10.001.
  • Mabelebele M, Kolobe SD, Malematja E, Sebola NA, Manyelo TG. 2022. A comprehensive review of the importance of selected trace elements present in edible insects. Biol. Trace Elem. Res. 1–8. doi:10.1007/s12011-022-03423-z.
  • Macheka L, Manditsera FA, Ngadze RT, Mubaiwa J, Nyarugwe S, Bangira C, Kembo G. 2022. Agro-ecological distribution and consumption of wild harvested edible insects, fruits, and vegetables in rural Zimbabwe. Future Foods. 6:100187–100187. doi:10.1016/j.fufo.2022.100187.
  • Madau FA, Arru B, Furesi R, Pulina P. 2020. Insect farming for feed and food production from a circular business model perspective. Sustainability. 12:5418. doi:10.3390/su12135418.
  • Magara HJ, Niassy S, Ayieko MA, Mukundamago M, Egonyu JP, Tanga CM, Kimathi EK, Ongere JO, Fiaboe KK, Hugel S, Orinda MA. 2021. Edible crickets (orthoptera) around the world: distribution, nutritional value, and other benefits—a review. Front Nutr. 7:257. doi:10.3389/fnut.2020.537915.
  • Makkar HPS, Tranb G, Heuzéb V, Ankersa P. 2014. State-of-the-art on use of insects as animal feed. Anim Feed Sci Technol. 197:1–33. doi:10.1016/j.anifeedsci.2014.07.008.
  • Mariod AA. 2020. The legislative status of edible insects in the world. In: Mariod AA, editor. African edible insects As alternative source of food, oil, protein and bioactive components. Cham: Springer Nature Switzerland; p. 141–148. doi:10.1007/978-3-030-32952-5_9.
  • Meyer-Rochow VB, Gahukar RT, Ghosh S, Jung C. 2021. Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods. 10(5):1036. doi:10.3390/foods10051036.
  • Mézes M, Erdélyi M. 2020. Food safety of edible insects. In: Mariod AA, editor. African edible insects as alternative source of food, Oil, protein and bioactive components. Cham: Springer Nature Switzerland; p. 83–94. doi:10.1007/978-3-030-32952-5_5.
  • Mishyna M, Keppler JK, Chen J. 2021. Techno-functional properties of edible insect proteins and effects of processing. Curr Opin Colloid Interface Sci. 56:101508–101508. doi:10.1016/j.cocis.2021.101508.
  • Mlcek J, Rop O, Borkovcova M, Bednarova M. 2014. A comprehensive look at the possibilities of edible insects as food in Europe – A review. Pol J Food Nutr Sci. 64:147–157. doi:10.2478/v10222-012-0099-8.
  • Mnisi CM, Oyeagu C, Ruzvidzo O. Mopane Worm (Gonimbrasia belina Westwood). 2022. Mopane worm (gonimbrasia belina westwood) meal as a potential protein source for sustainable quail production: A review. Sustainability. 14(9):5511. doi:10.3390/su14095511.
  • Motte C, Rios A, Lefebvre T, Do H, Henry M, Jintasataporn O. 2019. Replacing fish meal with defatted insect meal (Yellow Mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals (Basel). 9(5):258. doi:10.3390/ani9050258.
  • Mousavi S, Zahedinezhad S, Loh JY. 2020. A review on insect meals in aquaculture: The immunomodulatory and physiological effects. Int. Aquat.Res.2020. 12(2):100–115. doi:10.22034/IAR(20).2020.1897402.1033.
  • Mufandaedza E, Moyo DZ, Makoni P. 2015. Management of non-timber forest products harvesting: rules and regulations governing (imbrasia belina) access in south-eastern lowveld of Zimbabwe. African J Agr Res. 10:1521–1530. doi:10.5897/AJAR2013.7720.
  • Mulazzani L, Madau FA, Pulina P, Malorgio G. 2021. Acceptance of insect meal in aquaculture feeding: A stakeholder analysis for the Italian supply chains of trout and seabass. J World Aquac Soc. 52:378–394. doi:10.1111/jwas.12766.
  • Musundire R, Osuga IM, Cheseto X, Irungu J, Torto B. 2016. Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers. PLoS ONE. 11(1):e0145914. doi:10.1371/journal.pone.0145914.
  • Mwimanzi L, Musuka CG. 2016. The potential of Mopani worm (gonimbrasia belina) as an alternative protein source in fish feed. Int J Aquac. 4:73–78. doi:10.5376/ija.2014.04.0012.
  • National Research Council. 1993. Nutrient requirements of fish. Washington, DC: National Academies Press; 18–42.
  • National Research Council. 1994. Poultry nutrition and feeding. Washington, DC: National Academies Press.
  • Nischalke S, Wagler I, Tanga C, Allan D, Phankaew C, Ratompoarison C, Kusia E. 2020. How to turn collectors of edible insects into mini-livestock farmers: multidimensional sustainability challenges to a thriving industry. Glob. 26:100376. doi:10.1016/j.gfs.2020.100376.
  • Nogales-Merida S, Gobbi P, Józefiak D, Mazurkiewicz J, Dudek K, Rawski M, Kierończyk B, Józefiak A. 2019. Insect meals in fish nutrition. Rev Aquac. 11(4):1080–1103. doi:10.1111/raq.12281.
  • Nyangena DN, Mutungi C, Imathiu S, Kinyuru J, Affognon H, Ekesi S, Fiaboe KK. 2020. Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in east Africa. Foods. 9(5):574. doi:10.3390/foods9050574.
  • Oonincx DGAB. 2021. Nutritional value of insects and ways to manipulate their composition. J Insect Food Feed. 7(5):639–659. doi:10.3920/JIFF2020.0050.
  • Oonincx DGAB, Finke MD. 2021. Nutritional value of insects and ways to manipulate their composition. J Insects Food Feed. 7(5):639–659. doi:10.3920/JIFF2020.0050.
  • Orinda M, Magara H, Ayieko M, Nyakeri E. 2018. GREEiNSECT Technical Brief#2 Report: Insect production systems for food and feed in Kenya. 2018. Available from: https://www.researchgate.net/publication/327573356.
  • Orkusz A. 2021. Edible insects versus meat—nutritional comparison: knowledge of their composition Is the Key to good health. Nutrients. 13(4):1207. doi:10.3390/nu13041207.
  • Orsi L, Voege LL, Stranieri S. 2019. Eating edible insects as sustainable food? exploring the determinants of consumer acceptance in Germany. Food Res Int. 125:108–573. doi:10.1016/j.foodres.2019.108573.
  • Pali-Schöll I, Binder R, Moens Y, Polesny F, Monsó S. 2019. Edible insects – defining knowledge gaps in biological and ethical considerations of entomophagy. Crit Rev Food Sci Nutr. 59:2760–2771. doi:10.1080/10408398.2018.1468731.
  • Paul JA, Sarah Nkereuwem E, Okankan E, Peter O. 2020. Evaluation of the biochemical and nutritional quality of some edible insects: An alternative to food nutrient sources in cross river state, south-eastern Nigeria. Int J Adv Res. 8(2): 213–221. doi:10.21474/IJAR01/10456.
  • Payne CLR, Scarborough P, Rayner M, Nonaka K. 2016. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci Technol. 47:69–77. doi:10.1016/j.tifs.2015.10.012.
  • Potgieter MJ, Ramalivhana N. 2020. Data on mopane worm (Imbrasia belina) microorganisms from Limpopo province, South Africa. Data Br. 31:105–695. doi:10.1016/j.dib.2020.105695.
  • Ramos-Elorduy BJ, Moreno PMJ, Camacho MHV. 2012. Could grasshoppers be a nutritive meal? Food Nutr Sci. 3(2):164–175. doi:10.4236/fns.2012.32025.
  • Rapatsa MM, Moyo NAG. 2017. Evaluation of Imbrasia belina meal as a fishmeal substitute in oreochromis mossambicus diets: growth performance, histological analysis and enzyme activity. Aquac. 5:18–26. doi:10.1016/j.aqrep.2016.11.004.
  • Reverberi M. 2020. Edible insects: cricket farming and processing as an emerging market. J Insect Food Feed. 6:211–220. doi:10.3920/JIFF2019.0052.
  • Rumpold BA, Schluter OK. 2013. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 57:802–823. doi:10.1002/mnfr.201200735.
  • Salter AM. 2019. Insect protein: a sustainable and healthy alternative to animal protein? J Nutr. 149(4):545–546. doi:10.1093/jn/nxy315.
  • Sanchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. 2014. Insect meal as renewable source of food for animal feeding: a review. J Clean. 65:16–27. doi:10.1016/j.jclepro.2013.11.068.
  • Sankara F, Pousga S, Dao NCA, Gbemavo DSJC, Clottey VA, Coulibaly K, Kenis M. 2018. Indigenous knowledge and potential of termites as poultry feed in Burkina Faso. J Insect Food and Feed. 4(4):211–218. doi:10.3920/JIFF2017.0070.
  • Schluter O, Rumpold B, Holzhauser T, Roth A, Vogel RF, Quasigroch W, Vogel S, Heinz V, Jager H, Bandick N, et al. 2017. Safety aspects of the production of foods and food ingredients from insects. Mol Nutr Food Res. 61:1600520–520. doi:10.1002/mnfr.201600520.
  • Selaledi L, Mbajiorgu CA, Mabelebele M. 2020. The use of yellow mealworm (T. molitor) as alternative source of protein in poultry diets: a review. Trop Anim Health Prod. 52:7–16. doi:10.1007/s11250-019-02033-7.
  • Sithole M., Phiri K., Masabo T., Serpa S. 2021. Gendered spaces in natural resource utilisation for sustainable development in rural communities of Zimbabwe. Cogent Social Sciences. 7(1):1909792. doi:10.1080/23311886.2021.1909792.
  • Straub P, Tanga CM, Osuga I, Windisch W, Subramanian S. 2019. Experimental feeding studies with crickets and locusts on the use of feed mixtures composed of storable feed materials commonly used in livestock production. Anim Feed Sci Technol. 255:114–215. doi:10.1016/j.anifeedsci.2019.114215.
  • Tang C, Yang D, Liao H, Sun H, Liu C, Wei L, Li F. 2019. Edible insects as a food source: a review. Food Prod Proc Nutr. 1(1):1–13. doi:10.1186/s43014-019-0008-1.
  • Tanga CM, Egonyu JP, Beesigamukama D, Niassy S, Emily K, Magara HJ, Ekesi S. 2021. Edible insect farming as an emerging and profitable enterprise in East Africa. Curr Opin Insect Sci. 48:64–71. doi:10.1016/j.cois.2021.09.007.
  • Taufek NM, Aspani F, Muin H, Raji AA, Shaharudin Abdul Razak SA, Alias Z. 2016. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus). Fish Physiol Biochem. 42:1143–1155. doi:10.1007/s10695-016-0204-8.
  • Teffo LS. 2007. Nutritional and medicinal value of the edible stinkbug, Encosternum delegorguei Spinola consumed in the Limpopo Province of South Africa and its host plant Dodonaea viscosa Jacq. var. angustifolia (Doctoral dissertation, University of Pretoria). pp.2007. Available from: http://hdl.handle.net/2263/26961.
  • Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. 2021. Effects of full replacement of dietary fishmeal with insect meal from tenebrio molitor on rainbow trout gut and skin microbiota. J Anim Sci Biotechnol. 12(1):1–14. doi:10.1186/s40104-021-00551-9.
  • Thomas B. 2013. Sustainable harvesting and trading of mopane worms (Imbrasia belina) in northern Namibia: an experience from the uukwaluudhi area. Int J Environ Stud. 70:494–502. doi:10.1080/00207233.2013.829324.
  • Tilami SK, Turek J, Cerveny D, Lepic P, Kozak P, Burkina V, Sakalli S, Tomcala A, Sampels S, Mraz J. 2020. Insect meal as a partial replacement for fish meal in a formulated diet for perch Perca fluviatilis. Turkish J. Fish Aquat Sci. 20(12):867–878. doi:10.4194/1303-2712-v20_12_03.
  • van Huis A. 2017. Edible insects and research needs. J Insects Food Feed. 3:3–5. doi:10.3920/JIFF2017.x002.
  • van Huis A. 2020. Edible crickets, but which species? J Insect Food Feed. 6(2):91–94. doi:10.3920/JIFF2020.x001.
  • van Huis A, Oonincx DGAB. 2017. The environmental sustainability of insects as food and feed. A review. Agron Sust Dev. 37:43. doi:10.1007/s13593-017-0452-8.
  • van Huis A, van Itterbeeck J, Klunder H, Mertens E, Halloran A, Vantomme P. 2013. In: Rome: Food and Agriculture Organization of the United Nations, 187. http://www.fao.org/docrep/018/i3253e/i3253e.pdf
  • Veldkamp T, Bosch G. 2015. Insects: a protein-rich feed ingredient in pig and poultry diets. Animal Frontiers. 5(2):45–50.
  • Veldkamp T, van Duinkerken G, van Huis A, Lakemond CMM, Ottevanger E, Bosch G. 2002. Insects as a sustainable feed ingredient in Pig and poultry diets - A feasibility study. rapport 638–Wageningen Livestock Research; ISSN: 2012; 1570-8616.
  • Verspoor RL, Soglo M, Adeoti R, et al. 2020. Mineral analysis reveals extreme manganese concentrations in wild harvested and commercially available edible termites. Sci Rep. 10(1):1–9. doi:10.1038/s41598-020-63157-7.
  • Vrabec V, Kulma M, Cocan D. 2015. Insects as an alternative protein source for animal feeding: A short review about chemical composition. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Anim Sci Biotechn. 72(2):1–11. doi:10.15835/buasvmcn-asb:11656.
  • Wessels DCJ, Van der Waal C, de Boer WF. 2007. Induced chemical defences in colophospermum mopane trees. Afr J Range Forage Sci. 24:141–147. doi:10.2989/AJRFS.2007.24.3.4.297.
  • Zielinska E, Karas M, Jakubczyk A. 2017. Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int. J. Food sci Tech. 52:306–312. doi:10.1111/ijfs.13282.