951
Views
0
CrossRef citations to date
0
Altmetric
Plant Biology

Improving photosynthesis and drought tolerance in Nicotiana tabacum L. by foliar application of salicylic acid

, , , &
Article: 2224936 | Received 13 Mar 2023, Accepted 16 May 2023, Published online: 14 Jun 2023

References

  • Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S, Raza A, Ali HM, Siddiqui MH, Salem MZM, et al. 2021. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. PloS one. 16(12):e0260556. doi:10.1371/journal.pone.0260556.
  • Behnamnia M, Kalantari KM, Ziaie J. 2009. The effects of brassinosteroid on the induction of biochemical changes in Lycopersicon esculentum under drought stress. Turk J Botany. 33(6):417–428. doi:10.3906/bot-0806-12.
  • Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120. doi:10.1093/bioinformatics/btu170.
  • Chunduri V, Kaur A, Kaur S, Kumar A, Sharma S, Sharma N, Singh P, Kapoor P, Kaur S, Kumari A, et al. 2021. Gene expression and proteomics studies suggest an involvement of multiple pathways under day and day–night combined heat stresses during grain filling in wheat. Front Plant Sci. 12: 66046. doi:10.3389/fpls.2021.660446.
  • Demiralay M, Sag˘lam A, Kadioglu A. 2013. Salicylic acid delays leaf rolling by inducing antioxidant enzymes and modulating osmoprotectant content in Ctenanthe setosa under osmotic stress. Turk J Biol. 37(1):49–59. doi:10.3906/biy-1205-16.
  • Fan SQ, Liang SW. 1999. Guidance of modern plant physiology. Shanghai: Science Press; p. 303–306.
  • Gao DH, Gao Q, Xu HY, Ma F, Zhao CM, Liu JQ. 2009. Physiological responses to gradual drought stress in the diploid hybrid Pinus densata and its two parental species. Trees. 23(4):717–728. doi:10.1007/s00468-009-0314-3.
  • Jansson S. 1999. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4:236–240. doi:10.1016/S1360-1385(99)01419-3.
  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimastu T, Yamanishi Y. 2007. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36(suppl 1):D480–D484. doi:10.1093/nar/gkm882.
  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P. 2020. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater. 399:123020. doi:10.1016/j.jhazmat.2020.123020.
  • Khalvandi M, Siosemardeh A, Roohi E, Keramati S. 2021. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon. 7(1):e05908. doi:10.1016/j.heliyon.2021.e05908.
  • Khan R, Zhou PL, Ma XH, Zhou L, Wu YY, Ullah Z, Wang SS. 2019. Transcriptome profiling, biochemical and physiological analyses provide new insights towards drought tolerance in Nicotiana tabacum L. Genes. 10(12):1041. doi:10.3390/genes10121041.
  • Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 12(4):357–360. doi:10.1038/nmeth.3317.
  • Li HJ, Yang Y, Chang P, Zheng JC, Chen L, Hu YG. 2019. Transcriptome and photosynthetic trait analysis of TaER over-expression wheat under drought stress. J Triticeae Crops. 39(08):941–949.
  • Li HS, Sun Q, Zhao SJ, Zhang WH. 2000. Principle and technology of plant physiological and biochemical experiments. Beijing: Higher Education Press.
  • Liu HL, Piao XM, Xu WH, Bai XF, Cheng ZH, Jin F, Wang L, Han YZ. 2020. Effect of low temperature control in greenhouse on cold tolerance of high quality rice at seedling stage. North Rice. 50(06):27–29. doi:10.16170/j.cnki.1673-6737.2020.06.008.
  • Lo SC, Huang CC, Ho TY, Yang YT. 2019. Detailed profiling of carbon fixation of in silico synthetic autotrophy with reductive tricarboxylic acid cycle and Calvin-Benson-Bassham cycle in Esherichia coli using hydrogen as an energy source. Synthetic and Systems Biotechnology. 4(3):165–172. doi:10.1016/j.synbio.2019.08.003.
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNAseq data with DESeq2. Genome Biol. 15(12):1–21. doi:10.1186/s13059-014-0550-8.
  • Lu X, Zhou X, Cao Y, Zhou MX, Mcneil D, Liang S, Yang CW. 2017. RNA-Seq analysis of cold and drought responsive transcriptomes of Zea mays ssp. mexicana L. Front Plant Sci. 8:136. doi:10.3389/fpls.2017.00136.
  • Lu YZ, Li N, Zhang EH, Yin X, Zhao KT, Lan XZ. 2020. Effects of soaking seeds with salicylic acid on seed germination and drought resistance of Dracocephalum tanguticum. J Henan Agric Sci. 49(03):63–69. doi:10.15933/j.cnki.1004-3268.2020.03.009.
  • Ma C, Wang ZQ, Zhang LT, Sun MM, Lin TB. 2014. Photosynthetic responses of wheat (Triticum aestivum L.) to combined effects of drought and exogenous methyl jasmonate. Photosynthetica. 52(3):377–385. doi:10.1007/s11099-014-0041-x.
  • Maruri-López I, Aviles-Baltazar NY, Buchala A, Serrano M. 2019. Intra and extracellular journey of the phytohormone salicylic acid. Front Plant Sci. 10:423. doi:10.3389/fpls.2019.00423.
  • Michel BE, Kaufmann MR. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51(5):914–916. doi:10.1104/pp.51.5.914.
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33(4):453–467. doi:10.1111/j.1365-3040.2009.02041.x.
  • Mohammadi H, Rahimpour B, Pirasteh-Anosheh H, Race M. 2022. Salicylic acid manipulates ion accumulation and distribution in favor of salinity tolerance in Chenopodium quinoa. Int J Environ Res Public Health. 19(3):1576. doi:10.3390/ijerph19031576.
  • Nagarajan R, Gill KS. 2018. Evolution of Rubisco activase gene in plants. Plant Mol Biol. 96(1):69–87. doi:10.1007/s11103-017-0680-y.
  • Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. 2021. Osmoregulation and its actions during the drought stress in plants. Physiol Plant. 172(2):1321–1335. doi:10.1111/ppl.13297.
  • Patel RK, Jain M. 2012. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 7(2):e30619. doi:10.1371/journal.pone.0030619.
  • Pérez-López U, Robredo A, Lacuesta M, Mena-Petite A, Muñoz-Rueda A. 2012. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res. 111(3):269–283. doi:10.1007/s11120-012-9721-1.
  • Pirasteh-Anosheh H, Emam Y, Hashemi SE, Gaur A. 2020. Chapter 9 - Role of chlormequat chloride and salicylic acid in improving cereal crops production under saline conditions. In: Improving cereal productivity through climate smart practices. Sawston: Woodhead Publishing Series in Food Science, Technology and Nutrition; p. 145–158. doi:10.1016/B978-0-12-821316-2.00009-1.
  • Pirasteh-Anosheh H, Rahimpour B, Mohammadi H, Ranjbar G, Race M. 2023. Induced salinity tolerance by salicylic acid through physiological manipulations. In: Phytohormones and stress responsive secondary metabolites. San Diego: Academic Press; p. 99–109. doi:10.1016/B978-0-323-91883-1.00017-6.
  • Pirasteh-Anosheh H, Ranjbar G, Hasanuzzaman M, Khanna K, Bhardwaj R, Ahmad P. 2022. Salicylic acid-mediated regulation of morpho-physiological and yield attributes of wheat and barley plants in deferring salinity stress. J Plant Growth Regul. 41(3):1291–1303. doi:10.1007/s00344-021-10358-7.
  • Qi JS, Song CP, Wang BS, Zhou JM, Kangasjärvi J, Zhu JK, Gong ZZ. 2018. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol. 60(9):805–826. doi:10.1111/jipb.12654.
  • Rajput VD, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 10(4):267. doi:10.3390/biology10040267.
  • Saheri F, Barzin G, Pishkar L, Boojar MMA, Babaeekhou L. 2020. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia. 75(12):2189–2200. doi:10.2478/s11756-020-00571-2.
  • Shao RX, Xin LF, Guo JM, Zheng HF, Mao J, Han XP, Jia L, Du CG, Song R, Yang QH, Elmore RW. 2018. Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling. Photosynthetica. 56:1370–1377. doi:10.1007/s11099-018-0850-4.
  • Sharma A, Kohli SK, Khanna K, Ramakrishnan M, Kumar V, Bhardwaj R, Brestic M, Skalicky M, Landi M, Zheng BS. 2023. Salicylic acid: A phenolic molecule with multiple roles in salt-stressed plants. J Plant Growth Regul. 42 (2):1–25. doi:10.1007/s00344-022-10902-z.
  • Sharma A, Zheng BS. 2019. Melatonin mediated regulation of drought stress: physiological and molecular aspects. Plants. 8(7):190. doi:10.3390/plants8070190.
  • Shemi R, Wang R, Gheith ES, Hussain HA, Hussain S, Irfan M, Cholidah L, Zhang KP, Zhang S, Wang LC. 2021. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci Rep. 11(1):1–14. doi:10.1038/s41598-021-s82264-7.
  • Shinozaki K, Yamaguchi-Shinozaki K. 2006. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58(2):221–227. doi:10.1093/jxb/erl164.
  • Sohag AAM, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA, Hossain MA. 2020. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ. 66(1):7–13. doi:10.17221/472/2019-PSE.
  • Su XH, Wei FJ, Huo YJ, Xia ZL. 2017. Comparative physiological and molecular analyses of two contrasting flue-cured tobacco genotypes under progressive drought stress. Front Plant Sci. 8:827. doi:10.3389/fpls.2017.00827.
  • Takahashi S, Murata N. 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 13(4):178–182. doi:10.1016/j.tplants.2008.01.005.
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and cufflinks. Nat Protoc. 7:562–578. doi:10.1038/nprot.2012.016.
  • Wang F, Sang XH, Gu W, Chao JG, Zhou C, Tian R. 2020. Effects of salicylic acid on photosynthetic characteristics and physiological indexes of Atractylodes lancea (Thumb. DC). under drought stress. Mol Plant Breed. 18(09):3060–3067. doi:10.13271/j.mpb.018.003060.
  • Wang FJ, Tan HF, Huang LH, Cai C, Ding YF, Bao H, Chen ZX, Zhu C. 2021. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicol Environ Saf. 207:111198. doi:10.1016/j.ecoenv.2020.111198.
  • Wang ZB, Li GF, Sun HQ, Ma L, Guo YP, Zhao ZY, Gao H, Mei LX. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open. 7:11. doi:10.1242/bio.035279.
  • Wijewardene I, Mishra N, Sun L, Smith J, Zhu XL, Payton P, Shen GX, Zhang H. 2020. Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco Activase gene RCA. Plant Sci. 296:110499. doi:10.1016/j.plantsci.2020.110499.
  • Xiong B, Wang Y, Zhang Y, Ma MM, Gao YF, Zhou ZY, Wang BZ, Wang T, Lv XL, Wang X, et al. 2020. Alleviation of drought stress and the physiological mechanisms in Citrus cultivar (Huangguogan) treated with methyl jasmonate. Biosci Biotechnol Biochem. 84(9):1958–1965. doi:10.1080/09168451.2020.1771676.
  • Yoo YH, Chandran AKN, Park JC, Gho YS, Lee SW, An G, Jung KH. 2017. OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies. Front Plant Sci. 8:580. doi:10.3389/fpls.2017.00580.
  • Yordanova R, Baydanova V, Peeva V. 2017. Nitric oxide mediates the stress response induced by cadmium in maize plants. Genetics Plant Physiol. 7(3-4):121–134.
  • Zhang CL, Cao S, Man LL, Xiang DJ, Liu P. 2019. Analysis of PEG stress on drought tolerance and related response genes expression in soybean seedlings of two varieties. Mol Plant Breed. 17(18):5891–5898. doi:10.13271/j.mpb.017.005891.
  • Zhou SX, Duursma RA, Medlyn BE, Kelly JW, Prentice IC. 2013. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric For Meteorol. 182-183:204–214. doi:10.1016/j.agrformet.2013.05.009.