453
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synergistic and antagonistic interactions of triclosan with various antibiotics in bacteria

ORCID Icon, &

References

  • Alfhili MA, Lee M-H. Triclosan: an update on biochemical and molecular mechanisms. Oxid Med Cell Longev. 2019;2019:1607304. 1607304-1607304. doi:10.1155/2019/1607304.
  • Morais DS, Guedes RM, Lopes MA. Antimicrobial approaches for textiles: from research to market. Materials (Basel, Switzerland). 2016;9(6):498. doi:10.3390/ma9060498.
  • Lydon KA, Robertson MJ, Lipp EK. Patterns of triclosan resistance in Vibrionaceae. PeerJ. 2018; 6:e5170. doi:10.7717/peerj.5170.
  • Lu J, Wang Y, Li J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ Int. 2018;121(Pt 2):1217–1226. doi:10.1016/j.envint.2018.10.040.
  • Braoudaki M, Hilton AC. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol. 2004;42(1):73–78. doi:10.1128/jcm.42.1.73-78.2004.
  • Chuanchuen R, Beinlich K, Hoang TT, et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 2001;45(2):428–432. doi:10.1128/AAC.45.2.428-432.2001.
  • Karmakar S, Abraham TJ, Kumar S, et al. Triclosan exposure induces varying extent of reversible antimicrobial resistance in Aeromonas hydrophila and Edwardsiella tarda. Ecotoxicol Environ Saf. 2019;180:309–316. doi:10.1016/j.ecoenv.2019.05.010.
  • Shrestha P, Zhang W, Chen WJ, et al. Triclosan: antimicrobial mechanisms, clinical applications, antibiotics interactions, and human health. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2020;0(0):00–00.
  • Aiello AE, Larson EL, Levy SB. Consumer antibacterial soaps: effective or just risky? Clin Infect Dis. 2007;45(Suppl 2):S137–S47. doi:10.1086/519255.
  • Fang JL, Stingley RL, Beland FA, et al. Occurrence, efficacy, metabolism, and toxicity of triclosan. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2010;28(3):147–171. doi:10.1080/10590501.2010.504978.
  • WHO Organization. Antimicrobial resistance: global report on surveillance. Geneva, Switzerland: World Health Organization, 2014.
  • Gröschel MI, Meehan CJ, Barilar I, et al. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun. 2020;11(1):1–12. doi:10.1038/s41467-020-15123-0.
  • Spencer RC. The emergence of epidemic, multiple-antibiotic-resistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia. J Hosp Infect. 1995;30(Suppl):453–464. doi:10.1016/0195-6701(95)90049-7.
  • Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev. 2012;25(1):2–41. doi:10.1128/CMR.00019-11.
  • Nuonming P, Khemthong S, Dokpikul T, et al. Characterization and regulation of AcrABR, a RND-type multidrug efflux system, in Agrobacterium tumefaciens C58. Microbiol Res. 2018;214:146–155. doi:10.1016/j.micres.2018.06.014.
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2019. URL https://www.R-project.org/.
  • Ledder RG, Gilbert P, Willis C, et al. Effects of chronic triclosan exposure upon the antimicrobial susceptibility of 40 ex-situ environmental and human isolates. J Appl Microbiol. 2006;100(5):1132–1140. doi:10.1111/j.1365-2672.2006.02811.x.
  • Paixao L, Rodrigues L, Couto I, et al. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng. 2009;3:18. doi:10.1186/1754-1611-3-18.
  • Wong TY, Fernandes S, Sankhon N, et al. Role of premature stop codons in bacterial evolution. J Bacteriol. 2008;190(20):6718–6725. doi:10.1128/JB.00682-08.
  • Xu L, Kuo J, Liu JK, et al. Bacterial phylogenetic tree construction based on genomic translation stop signals. Microb Inform Exp. 2012;2(1):6. doi:10.1186/2042-5783-2-6.
  • Kampf G. Biocidal agents used for disinfection can enhance antibiotic resistance in Gram-Negative species. Antibiotics (Basel). 2018;7(4):110. doi:10.3390/antibiotics7040110.
  • Kampf G. Antibiotic resistance can be enhanced in Gram-Positive species by some biocidal agents used for disinfection. Antibiotics (Basel). 2019;8(1):13. doi:10.3390/antibiotics8010013.
  • Lu J, Jin M, Nguyen SH, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environ Int. 2018; 118:257–265. doi:10.1016/j.envint.2018.06.004.
  • Schumacher MA, Miller MC, Grkovic S, et al. Structural mechanisms of QacR induction and multidrug recognition. Science. 2001;294(5549):2158–2163. doi:10.1126/science.1066020.
  • Ahmed M, Lyass L, Markham PN, et al. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J Bacteriol. 1995;177(14):3904–3910. doi:10.1128/jb.177.14.3904-3910.1995.
  • Fernando DM, Kumar A. Resistance-Nodulation-Division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiotics (Basel). 2013;2(1):163–181. doi:10.3390/antibiotics2010163.
  • Lin YT, Huang YW, Chen SJ, et al. The SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence in mice. Antimicrob Agents Chemother. 2015;59(7):4067–4073. doi:10.1128/aac.00372-15.
  • Slipski CJ, Zhanel GG, Bay DC. Biocide Selective TolC-Independent efflux pumps in Enterobacteriaceae. J Membr Biol. 2018;251(1):15–33. doi:10.1007/s00232-017-9992-8.
  • Lavilla Lerma L, Benomar N, Valenzuela AS, et al. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014;44:249–257. doi:10.1016/j.fm.2014.06.009.
  • Cameron A, Barbieri R, Read R, et al. Functional screening for triclosan resistance in a wastewater metagenome and isolates of Escherichia coli and Enterococcus spp. from a large Canadian healthcare region. PLoS One. 2019;14(1):e0211144. doi:10.1371/journal.pone.0211144.
  • Zhu L, Lin J, Ma J, et al. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a Triclosan-Resistant Enoyl-Acyl carrier protein reductase. Antimicrob Agents Chemother. 2010;54(2):689–698. doi:10.1128/aac.01152-09.
  • Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol. 2002;184(18):5036–5044. doi:10.1128/jb.184.18.5036-5044.2002.
  • Ghosh S, Cremers CM, Jakob U, et al. Chlorinated phenols control the expression of the multidrug resistance efflux pump MexAB-OprM in Pseudomonas aeruginosa by interacting with NalC. Mol Microbiol. 2011;79(6):1547–1556. doi:10.1111/j.1365-2958.2011.07544.x.
  • Morita Y, Kimura N, Mima T, et al. Roles of MexXY- and MexAB-multidrug efflux pumps in intrinsic multidrug resistance of Pseudomonas aeruginosa PAO1. J Gen Appl Microbiol. 2001;47(1):27–32. doi:10.2323/jgam.47.27.
  • Hernandez A, Ruiz FM, Romero A, et al. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog. 2011;7(6):e1002103. doi:10.1371/journal.ppat.1002103.
  • Lv L, Wan M, Wang C, et al. Emergence of a Plasmid-Encoded Resistance-Nodulation-Division efflux pump conferring resistance to multiple drugs, including Tigecycline, in Klebsiella pneumoniae. mBio. 2020;11(2):1–15. doi:10.1128/mBio.02930-19.
  • Storch ML, Rothenburger SJ, Jacinto G. Experimental efficacy study of coated VICRYL plus antibacterial suture in guinea pigs challenged with Staphylococcus aureus. Surg Infect (Larchmt). 2004;5(3):281–288. doi:10.1089/sur.2004.5.281.
  • Jones GL, Muller CT, O'Reilly M, et al. Effect of triclosan on the development of bacterial biofilms by urinary tract pathogens on urinary catheters. J Antimicrob Chemother. 2006;57(2):266–272. doi:10.1093/jac/dki447.
  • Stamatis NK, Konstantinou IK. Occurrence and removal of emerging pharmaceutical, personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. J Environ Sci Health B. 2013;48(9):800–813. doi:10.1080/03601234.2013.781359.
  • Salierno JD, Lopes M, Rivera M. Latent effects of early life stage exposure to triclosan on survival in fathead minnows, Pimephales promelas. J Environ Sci Health B. 2016;51(10):695–702. doi:10.1080/03601234.2016.1191908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.