830
Views
1
CrossRef citations to date
0
Altmetric
Articles

Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health

ORCID Icon, , &

References

  • Windholz M, Merck & Co. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. 10th ed. Rahway, NJ: Merck; 1983.
  • Weatherly LM, Gosse JA. Triclosan exposure, transformation, and human health effects. J Toxicol Environ Health B Crit Rev. 2017;20(8):447–469. doi:10.1080/10937404.2017.1399306.
  • Niederman R. Triclosan-containing toothpastes reduce plaque and gingivitis. Evid Based Dent. 2005;6(2):33–33. doi:10.1038/sj.ebd.6400318.
  • He X, Xia Q, Ma L, et al. 7-cysteine-pyrrole conjugate: A new potential DNA reactive metabolite of pyrrolizidine alkaloids. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2016;34(1):57–76. doi:10.1080/10590501.2015.1135593.
  • Wong T-Y. Smog induces oxidative stress and microbiota disruption. J Food Drug Anal. 2017;25(2):235–244. doi:10.1016/j.jfda.2017.02.003.
  • Aker AM, Ferguson KK, Rosario ZY, et al. The associations between prenatal exposure to triclocarban, phenols and parabens with gestational age and birth weight in northern Puerto Rico. Environ Res. 2019;169:41–51. doi:10.1016/j.envres.2018.10.030.
  • Guo J, Wu C, Zhang J, et al. Early life triclosan exposure and neurodevelopment of children at 3 years in a prospective birth cohort. Int J Hyg Environ Health. 2020;224:113427. doi:10.1016/j.ijheh.2019.113427.
  • Xie X, Lu C, Wu M, et al. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013-2014)). Environ Int. 2020;136:105445. doi:10.1016/j.envint.2019.105445.
  • Fan JJ, Wang S, Tang JP, et al. Bioaccumulation of endocrine disrupting compounds in fish with different feeding habits along the largest subtropical river, China. Environ Pollut. 2019;247:999–1008. doi:10.1016/j.envpol.2019.01.113.
  • Rossmassler K, Kim S, Broeckling CD, et al. Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation. 2019;30(2–3):127–145. doi:10.1007/s10532-019-09871-0.
  • Aiello AE, Larson EL, Levy SB. Consumer antibacterial soaps: effective or just risky? Clin Infect Dis. 2007;45(Suppl 2):S137–S47. doi:10.1086/519255.
  • Kim SA, Moon H, Lee K, et al. Bactericidal effects of triclosan in soap both in vitro and in vivo. J Antimicrob Chemother. 2015;70(12):3345–3352. doi:10.1093/jac/dkv275.
  • Ley C, Sundaram V, Sanchez ML, et al. Triclosan and triclocarban exposure, infectious disease symptoms and antibiotic prescription in infants-A community-based randomized intervention. PLoS One. 2018;13(6):e0199298. doi:10.1371/journal.pone.0199298.
  • Ruszkiewicz JA, Li S, Rodriguez MB, et al. Is Triclosan a neurotoxic agent? J Toxicol Environ Health B Crit Rev. 2017;20(2):104–117. doi:10.1080/10937404.2017.1281181.
  • Bondi CAM, Arbogast JW, Macinga DR, et al. Virucidal performance of various professional hand hygiene products against avian influenza A H5N1. Am J Infect Control. 2007;35(5):E34–E35. doi:10.1016/j.ajic.2007.04.027.
  • Dellanno C, Vega Q, Boesenberg D. The antiviral action of common household disinfectants and antiseptics against murine hepatitis virus, a potential surrogate for SARS coronavirus. Am J Infect Control. 2009;37(8):649–652. doi:10.1016/j.ajic.2009.03.012.
  • Yue Y, Wang Z, Zhang Y, et al. Binding of triclosan and triclocarban to pepsin: DFT, spectroscopic and dynamic simulation studies. Chemosphere. 2019;214:278–287. doi:10.1016/j.chemosphere.2018.09.108.
  • Mi C, Teng Y, Wang X, et al. Molecular interaction of triclosan with superoxide dismutase (SOD) reveals a potentially toxic mechanism of the antimicrobial agent. Ecotoxicol Environ Saf. 2018;153:78–83. doi:10.1016/j.ecoenv.2018.01.055.
  • Park GW, Barclay L, Macinga D, et al. Comparative efficacy of seven hand sanitizers against murine norovirus, feline calicivirus, and GII.4 norovirus. J Food Prot. 2010;73(12):2232–2238. doi:10.4315/0362-028x-73.12.2232.
  • Iyigundogdu ZU, Demir O, Asutay AB, et al. Developing novel antimicrobial and antiviral textile products. Appl Biochem Biotechnol. 2017;181(3):1155–1166. doi:10.1007/s12010-016-2275-5.
  • Heath RJ, Rubin JR, Holland DR, et al. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem. 1999;274(16):11110–11114. doi:10.1074/jbc.274.16.11110.
  • Zhu K, Choi K-H, Schweizer HP, et al. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol Microbiol. 2006;60(2):260–273. doi:10.1111/j.1365-2958.2006.05088.x.
  • Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels. 2014;7(1):7. doi:10.1186/1754-6834-7-7.
  • Lopez-Gigosos RM, Mariscal A, Gutierrez-Bedmar M, et al. Carbapenem resistance in Acinetobacter baumannii is associated with enhanced survival on hospital fabrics. Acta Microbiol Immunol Hung. 2018;66(1):1–12. doi:10.1556/030.65.2018.043.
  • Lydon KA, Robertson MJ, Lipp EK. Patterns of triclosan resistance in Vibrionaceae. PeerJ. 2018;6:e5170. doi:10.7717/peerj.5170.
  • Parikh SL, Xiao G, Tonge PJ. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry. 2000;39(26):7645–7650. doi:10.1021/bi0008940.
  • Vosatka R, Kratky M, Vinsova J. Triclosan and its derivatives as antimycobacterial active agents. Eur J Pharm Sci. 2018;114:318–331. doi:10.1016/j.ejps.2017.12.013.
  • Khade AB, Boshoff HIM, Arora K, et al. Design, synthesis, evaluation, and molecular dynamic simulation of triclosan mimic diphenyl ether derivatives as antitubercular and antibacterial agents. Struct Chem. 2020;31(3):983–998. doi:10.1007/s11224-019-01478-8.
  • Rodriguez F, Saffon N, Sammartino JC, et al. First triclosan-based macrocyclic inhibitors of InhA enzyme. Bioorg Chem. 2020;95:103498. doi:10.1016/j.bioorg.2019.103498.
  • Nosho K, Yasuhara K, Ikehata Y, et al. Isolation of colonization-defective Escherichia coli mutants reveals critical requirement for fatty acids in bacterial colony formation. Microbiology (Reading, Engl).). 2018;164(9):1122–1132. doi:10.1099/mic.0.000673.
  • Maiden MM, Hunt AMA, Zachos MP, et al. Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother. 2018;62(6):e00146–18. doi:10.1128/AAC.00146-18.
  • Walsh D, Aylott J, Hardie K. The biocide triclosan triggers multiple regulatory systems in Staphylococcus aureus to induce antibiotic tolerance. Access Microbiol. 2019;1(1A):323–367. doi:10.1099/acmi.ac2019.po0323.
  • Li Y, Li C, Qin H, et al. Proteome and phospholipid alteration reveal metabolic network of Bacillus thuringiensis under triclosan stress. Sci Total Environ. 2018;615:508–516. doi:10.1016/j.scitotenv.2017.10.004.
  • Zhu L, Lin J, Ma J, et al. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a Triclosan-Resistant Enoyl-Acyl carrier protein reductase. Antimicrob Agents Chemother. 2010;54(2):689–698. doi:10.1128/aac.01152-09.
  • Fernando DM, Kumar A. Resistance-Nodulation-Division multidrug efflux pumps in gram-negative bacteria: role in virulence. Antibiotics (Basel)). 2013;2(1):163–181. doi:10.3390/antibiotics2010163.
  • Nikaido H. RND transporters in the living world. Res Microbiol. 2018;169(7-8):363–371. doi:10.1016/j.resmic.2018.03.001.
  • Nuonming P, Khemthong S, Dokpikul T, et al. Characterization and regulation of AcrABR, a RND-type multidrug efflux system, in Agrobacterium tumefaciens C58. Microbiol Res. 2018;214:146–155. doi:10.1016/j.micres.2018.06.014.
  • Chuanchuen R, Beinlich K, Hoang TT, et al. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother. 2001;45(2):428– 432. doi:10.1128/AAC.45.2.428-432.2001.
  • Hernandez A, Ruiz FM, Romero A, et al. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog. 2011;7(6):e1002103. doi:10.1371/journal.ppat.1002103.
  • Eagle H. A paradoxical zone phenomenon in the bactericidal action of penicillin in vitro. Science. 1948;107(2767):44–45. doi:10.1126/science.107.2767.44.
  • Prasetyoputri A, Jarrad AM, Cooper MA, et al. The eagle effect and antibiotic-induced persistence: two sides of the same coin? Trends Microbiol. 2019;27(4):339–354. doi:10.1016/j.tim.2018.10.007.
  • Shrestha P, Ni J, Wong TY. Synergistic and antagonistic interactions of triclosan with various antibiotics in bacteria. J Environ Sci Health, Part C. 2020;38(3):1–17.
  • Kampf G. Antibiotic resistance can be enhanced in gram-positive species by some biocidal agents used for disinfection. Antibiotics (Basel). 2019;8(1):13. doi:10.3390/antibiotics8010013.
  • Lavilla Lerma L, Benomar N, Valenzuela AS, et al. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014;44:249–257. doi:10.1016/j.fm.2014.06.009.
  • Shrestha P, Joshi B, Joshi J, et al. Isolation and physicochemical characterization of laccase from Ganoderma lucidum-CDBT1 isolated from its native habitat in Nepal. Biomed Res Int. 2016;2016:3238909. doi:10.1155/2016/3238909.
  • Murugesan K, Chang YY, Kim YM, et al. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res. 2010;44(1):298–308. doi:10.1016/j.watres.2009.09.058.
  • Li M, He Y, Sun J, et al. Chronic exposure to an environmentally relevant triclosan concentration induces persistent triclosan resistance but reversible antibiotic tolerance in Escherichia coli. Environ Sci Technol. 2019;53(6):3277–3286. doi:10.1021/acs.est.8b06763.
  • Westfall C, Flores-Mireles AL, Robinson JI, et al. The widely used antimicrobial triclosan induces high levels of antibiotic tolerance in vitro and reduces antibiotic efficacy up to 100-fold in vivo. Antimicrob Agents Chemother. 2019;63(5):e02312. doi:10.1128/AAC.02312-18.
  • Kim HY, Go J, Lee K-M, et al. Guanosine tetra- and pentaphosphate increase antibiotic tolerance by reducing reactive oxygen species production in Vibrio cholerae. J Biol Chem. 2018;293(15):5679–5694. doi:10.1074/jbc.RA117.000383.
  • Díaz-Salazar C, Calero P, Espinosa-Portero R, et al. The stringent response promotes biofilm dispersal in Pseudomonas putida. Sci Rep. 2017;7(1):18055. doi:10.1038/s41598-017-18518-0.
  • Lu J, Jin M, Nguyen SH, et al. Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environ Int. 2018;118:257–265. doi:10.1016/j.envint.2018.06.004.
  • Lu J, Wang Y, Li J, et al. Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environ Int. 2018;121(Pt 2):1217–1226. doi:10.1016/j.envint.2018.10.040.
  • Lu J, Wang Y, Zhang S, et al. Triclosan at environmental concentrations can enhance the spread of extracellular antibiotic resistance genes through transformation. Sci Total Environ. 2020;713:136621. doi:10.1016/j.scitotenv.2020.136621.
  • Luque-Sastre L, Fox EM, Jordan K, et al. A comparative study of the susceptibility of listeria species to sanitizer treatments when grown under planktonic and biofilm conditions. J Food Prot. 2018;81(9):1481–1490. doi:10.4315/0362-028X.JFP-17-466.
  • Liu Y, Ren Y, Li Y, et al. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 2018;79:331–343. doi:10.1016/j.actbio.2018.08.038.
  • Liu S-R, Peng X-X, Li H. Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus. Infect Drug Resist. 2019;12(417):417–429. 429. doi:10.2147/IDR.S179639.
  • Alfhili MA, Lee M-H. Triclosan: an update on biochemical and molecular mechanisms. Oxid Med Cell Longev. 2019;2019:1607304–1607304. doi:10.1155/2019/1607304.
  • Su Y, Zhao L, Meng F, et al. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Mater Sci Eng C Mater Biol Appl. 2018;93:921–930. doi:10.1016/j.msec.2018.08.063.
  • Morais DS, Guedes RM, Lopes MA. Antimicrobial approaches for textiles: from research to market. Materials (Basel). 2016;9(6):498. doi:10.3390/ma9060498.
  • Alfhili MA, Weidner DA, Lee M-H. Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. Chemosphere. 2019;229:103–111. doi:10.1016/j.chemosphere.2019.04.211.
  • Saint S. Clinical and economic consequences of nosocomial catheter-related bacteriuria. Am J Infect Control. 2000;28(1):68–75. doi:https://doi.org/10.1016/S0196-6553(00)90015-4 doi:10.1016/S0196-6553(00)90015-4.
  • Belfield K, Betts H, Parkinson R, et al. A tolerability and patient acceptability pilot study of a novel antimicrobial urinary catheter for long-term use. Neurourol Urodyn. 2019;38(1):338–345. doi:10.1002/nau.23858.
  • Majeed A, Sagar F, Latif A, et al. Does antimicrobial coating and impregnation of urinary catheters prevent catheter-associated urinary tract infection? A review of clinical and preclinical studies. Expert Rev Med Devices. 2019;16(9):809–820. doi:10.1080/17434440.2019.1661774.
  • Stickler DJ, Jones GL, Russell AD. Control of encrustation and blockage of Foley catheters. The Lancet. 2003;361(9367):1435–1437. doi:https://doi.org/10.1016/S0140-6736(03)13104-2 doi:10.1016/S0140-6736(03)13104-2.
  • Darouiche RO, Mansouri MD, Gawande PV, et al. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB® combination. J Antimicrob Chemother. 2009;64(1):88–93. doi:10.1093/jac/dkp158.
  • Ayyash M, Shehabi A, Mahmoud NN, et al. Anti-biofilm properties of triclosan with EDTA or cranberry as foley catheter lock solutions. J Appl Microbiol. 2019;127(6):1876–1888. doi:10.1111/jam.14439.
  • Stine SL, Odum SM, Mertens WD. Protocol changes to reduce implant-associated infection rate after tibial plateau leveling osteotomy: 703 dogs, 811 TPLO (2006-2014). Vet Surg. 2018;47(4):481–489. doi:10.1111/vsu.12796.
  • Yamaguchi S, Shida Y, Ihara K, et al. Effect of triclosan-impregnated polydioxanone sutures on the incidence of surgical site infection in colorectal surgery. Am Surg. 2018;84(12):e522–e523. doi:10.1177/000313481808401208.
  • Lin SJ, Chang FC, Huang TW, et al. Temporal change of interleukin-6, C-reactive protein, and skin temperature after total knee arthroplasty using triclosan-coated sutures. Biomed Res Int. 2018;2018:9136208. doi:10.1155/2018/9136208.
  • Sprowson AP, Jensen C, Ahmed I, et al. Infographic: triclosan-coated sutures and surgical site infections after hip and knee arthroplasty. Bone Joint J. 2018;100-B(3):294–295. doi:10.1302/0301-620X.100B3.BJJ-2018-0099.
  • Sprowson AP, Jensen C, Parsons N, et al. The effect of triclosan-coated sutures on the rate of surgical site infection after hip and knee arthroplasty: a double-blind randomized controlled trial of 2546 patients. Bone Joint J. 2018;100-B(3):296–302. doi:10.1302/0301-620X.100B3.BJJ-2017-0247.R1.
  • Ahmed I, Boulton AJ, Rizvi S, et al. The use of triclosan-coated sutures to prevent surgical site infections: a systematic review and meta-analysis of the literature. BMJ Open. 2019;9(9):e029727. doi:10.1136/bmjopen-2019-029727.
  • McCagherty J, Yool DA, Paterson GK, et al. Investigation of the in vitro antimicrobial activity of triclosan-coated suture material on bacteria commonly isolated from wounds in dogs. Am J Vet Res. 2020;81(1):84–90. doi:10.2460/ajvr.81.1.84.
  • Stewart B, Shibli JA, Araujo M, et al. Effects of a toothpaste containing 0.3% triclosan in the maintenance phase of peri-implantitis treatment: 2-Year randomized clinical trial. Clin Oral Impl Res. 2018;29(10):973–985. doi:10.1111/clr.13363.
  • Monteiro MF, Tonelli H, Reis AA, et al. Triclosan toothpaste as an adjunct therapy to plaque control in children from periodontitis families: a crossover clinical trial. Clin Oral Invest. 2020;24(4):1421–1430. doi:10.1007/s00784-019-03121-6.
  • West NX, He T, Hellin N, et al. Randomized in situ clinical trial evaluating erosion protection efficacy of a 0.454% stannous fluoride dentifrice. Int J Dent Hyg. 2018;17(3):261–267. doi:10.1111/idh.12379.
  • Pavez L, Tobar N, Chacon C, et al. Chitosan-triclosan particles modulate inflammatory signaling in gingival fibroblasts. J Periodont Res. 2018;53(2):232–239. doi:10.1111/jre.12510.
  • Peres Pimentel S, Vieira Ribeiro F, Correa Casarin R, et al. Triclosan-containing fluoride toothpaste on clinical parameters and osteo-inflammatory mediators when applied in a stent during experimental peri-implant mucositis in smokers. Clin Oral Implants Res. 2019;30(2):187–195. doi:10.1111/clr.13405.
  • Ribeiro FV, Casati MZ, Casarin RC, et al. Impact of a triclosan-containing toothpaste during the progression of experimental peri-implant mucositis: Clinical parameters and local pattern of osteo-immunoinflammatory mediators in peri-implant fluid. J Periodontol. 2018;89(2):203–212. doi:10.1002/JPER.17-0302.
  • Machado AHS, Garcia IM, Motta ASD, et al. Triclosan-loaded chitosan as antibacterial agent for adhesive resin. J Dent. 2019;83:33–39. doi:10.1016/j.jdent.2019.02.002.
  • Guo X, Cheng Q, Yu G, et al. The functions of hydrophobic elastic polyurethane combined with an antibacterial triclosan derivative in the dentin restoration interface. J Mech Behav Biomed Mater. 2020;102:103471. doi:10.1016/j.jmbbm.2019.103471.
  • Moss T, Howes D, Williams FM. Percutaneous penetration and dermal metabolism of triclosan (2,4, 4'-trichloro-2'-hydroxydiphenyl ether). Food Chem Toxicol. 2000;38(4):361–370. doi:10.1016/S0278-6915(99)00164-7.
  • Sandborgh-Englund G, Adolfsson-Erici M, Odham G, et al. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health Part A. 2006;69(20):1861–1873. doi:10.1080/15287390600631706.
  • Van der Meer TP, Artacho-Cordón F, Swaab DF, et al. Distribution of non-persistent endocrine disruptors in two different regions of the human brain. Int J Environ Res Public Health. 2017;14(9):1059. doi:10.3390/ijerph14091059.
  • Yao L, Lv YZ, Zhang LJ, et al. Determination of 24 personal care products in fish bile using hybrid solvent precipitation and dispersive solid phase extraction cleanup with ultrahigh performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. J Chromatogr A. 2018;1551:29–40. doi:10.1016/j.chroma.2018.04.003.
  • Li D, Tolleson WH, Yu D, et al. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2019;37(3):180–214. doi:10.1080/10590501.2019.1639481.
  • Bhardwaj P, Biswas GP, Bhunia B. Docking-based inverse virtual screening strategy for identification of novel protein targets for triclosan. Chemosphere. 2019;235:976–984. doi:10.1016/j.chemosphere.2019.07.027.
  • Popova LB, Nosikova ES, Kotova EA, et al. Protonophoric action of triclosan causes calcium efflux from mitochondria, plasma membrane depolarization and bursts of miniature end-plate potentials. Biochim Biophys Acta Biomembr. 2018;1860(5):1000–1007. doi:10.1016/j.bbamem.2018.01.008.
  • Jacobs MN, Nolan GT, Hood SR. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicol Appl Pharmacol. 2005;209(2):123–133. doi:10.1016/j.taap.2005.03.015.
  • Zhang X, Zhang X, Zhang Y, et al. Mitochondrial uncoupler triclosan induces vasorelaxation of rat arteries. Acta Pharm Sin B. 2017;7(6):623–629. doi:10.1016/j.apsb.2017.06.001.
  • Fu J, Gong Z, Bae S. Assessment of the effect of methyl-triclosan and its mixture with triclosan on developing zebrafish (Danio rerio) embryos using mass spectrometry-based metabolomics. J Hazard Mater. 2019;368:186–196. doi:10.1016/j.jhazmat.2019.01.019.
  • Li X, An J, Li H, et al. The methyl-triclosan induced caspase-dependent mitochondrial apoptosis in HepG2 cells mediated through oxidative stress. Ecotoxicol Environ Saf. 2019;182:109391. doi:10.1016/j.ecoenv.2019.109391.
  • Bai X, Acharya K. Uptake of endocrine-disrupting chemicals by quagga mussels (Dreissena bugensis) in an urban-impacted aquatic ecosystem. Environ Sci Pollut Res Int. 2019;26(1):250–258. doi:10.1007/s11356-018-3320-4.
  • Peng X, Zheng K, Liu J, et al. Body size-dependent bioaccumulation, tissue distribution, and trophic and maternal transfer of phenolic endocrine-disrupting contaminants in a freshwater ecosystem. Environ Toxicol Chem. 2018;37(7):1811–1823. doi:10.1002/etc.4150.
  • Zhang H, Hua Y, Chen J, et al. Organism-derived phthalate derivatives as bioactive natural products. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(3):125–144. doi:10.1080/10590501.2018.1490512.
  • Cai S, Zhu J, Sun L, et al. Association between urinary triclosan with bone mass density and osteoporosis in the US adult women, 2005–2010. J Clin Endocrinol Metabol. 2019;104(10):4531–4538. doi:10.1210/jc.2019-00576.
  • Wu Y, Beland FA, Fang J-L. Effect of triclosan, triclocarban, 2,2′,4,4′-tetrabromodiphenyl ether, and bisphenol A on the iodide uptake, thyroid peroxidase activity, and expression of genes involved in thyroid hormone synthesis. Toxicol in Vitro. 2016;32:310–319. doi:10.1016/j.tiv.2016.01.014.
  • Cao X, Hua X, Wang X, et al. Exposure of pregnant mice to triclosan impairs placental development and nutrient transport. Sci Rep. 2017;7:44803. doi:10.1038/srep44803. https://www.nature.com/articles/srep44803#supplementary-information
  • Hua X, Xiong J-W, Zhang Y-J, et al. Exposure of pregnant mice to triclosan causes hyperphagic obesity of offspring via the hypermethylation of proopiomelanocortin promoter. Arch Toxicol. 2019;93(2):547–558. doi:10.1007/s00204-018-2338-1.
  • Jackson EN, Rowland-Faux L, James MO, et al. Administration of low dose triclosan to pregnant ewes results in placental uptake and reduced estradiol sulfotransferase activity in fetal liver and placenta. Toxicol Lett. 2018;294:116–121. doi:10.1016/j.toxlet.2018.05.014.
  • Montagnini BG, Pernoncine KV, Borges LI, et al. Investigation of the potential effects of triclosan as an endocrine disruptor in female rats: uterotrophic assay and two-generation study. Toxicology. 2018;410:152–165. doi:10.1016/j.tox.2018.10.005.
  • Chen X, Xu B, Han X, et al. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish. Arch Toxicol. 2015;89(4):635–646. doi:10.1007/s00204-014-1270-2.
  • Liu H, Li J, Xia W, et al. Blood pressure changes during pregnancy in relation to urinary paraben, triclosan and benzophenone concentrations: a repeated measures study. Environ Int. 2019;122:185–192. doi:10.1016/j.envint.2018.11.003.
  • Zhong J, Baccarelli AA, Mansur A, et al. Maternal phthalate and personal care products exposure alters extracellular placental miRNA profile in twin pregnancies. Reprod Sci. 2019;26(2):289–294. doi:10.1177/1933719118770550.
  • Machtinger R, Berman T, Adir M, et al. Urinary concentrations of phthalate metabolites, bisphenols and personal care product chemical biomarkers in pregnant women in Israel. Environ Int. 2018;116:319–325. doi:10.1016/j.envint.2018.04.022.
  • Lester F, Arbuckle TE, Peng Y, et al. Impact of exposure to phenols during early pregnancy on birth weight in two Canadian cohort studies subject to measurement errors. Environ Int. 2018;120:231–237. doi:10.1016/j.envint.2018.08.005.
  • Wang C, Chen L, Zhao S, et al. Impacts of prenatal triclosan exposure on fetal reproductive hormones and its potential mechanism. Environ Int. 2018;111:279–286. doi:10.1016/j.envint.2017.11.007.
  • Ouyang F, Tang N, Zhang HJ, et al. Maternal urinary triclosan level, gestational diabetes mellitus and birth weight in Chinese women. Sci Total Environ. 2018;626:451–457. doi:10.1016/j.scitotenv.2018.01.102.
  • Wu C, Li J, Xia W, et al. The association of repeated measurements of prenatal exposure to triclosan with fetal and early-childhood growth. Environ Int. 2018;120:54–62. doi:10.1016/j.envint.2018.07.022.
  • Jackson-Browne MS, Papandonatos GD, Chen A, et al. Identifying vulnerable periods of neurotoxicity to triclosan exposure in children. Environ Health Perspect. 2018;126(5):057001doi:10.1289/EHP2777.
  • Nakiwala D, Peyre H, Heude B, et al. In-utero exposure to phenols and phthalates and the intelligence quotient of boys at 5 years. Environ Health. 2018;17(1):17. doi:10.1186/s12940-018-0359-0.
  • Pace LR, Wc M, A R, et al. Deleterious impact of smog on the intestinal bacteria. In: Joel, F, Faintuch, S. eds. Microbiome and Metabolome in Diagnosis, Therapy, and Other Strategic Applications. Cambridge, Massachusetts: Academic Press; 2019:504.
  • Sanidad KZ, Xiao H, Zhang G. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health. Gut Microbes. 2018;10(3):1–4. doi:10.1080/19490976.2018.1546521.
  • Sanidad KZ, Xiao H, Zhang G. Triclosan, a common antimicrobial ingredient, on gut microbiota and gut health. Gut Microbes. 2019;10(3):434–437. doi:10.1080/19490976.2018.1546521.
  • Yang H, Wang W, Romano KA, et al. A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Sci Transl Med. 2018;10(443):1–11. doi:10.1126/scitranslmed.aan4116.
  • Wang C, Yu Z, Shi X, et al. Triclosan enhances the clearing of pathogenic intracellular salmonella or candida albicans but disturbs the intestinal microbiota through mTOR-independent autophagy. Front Cell Infect Microbiol. 2018;8:49. doi:10.3389/fcimb.2018.00049.
  • Bever CS, Rand AA, Nording M, et al. Effects of triclosan in breast milk on the infant fecal microbiome. Chemosphere. 2018;203:467–473. doi:10.1016/j.chemosphere.2018.03.186.
  • Long J, Zhang CJ, Zhu N, et al. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res. 2018;8(5):778–791.
  • Chierici M, Giulini M, Bussola N, et al. Machine learning models for predicting endocrine disruption potential of environmental chemicals. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(4):237–251. doi:10.1080/10590501.2018.1537155.
  • Li Y, Idakwo G, Thangapandian S, et al. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(4):219–236. doi:10.1080/10590501.2018.1537148.
  • Tseng TT, Gratwick KS, Kollman J, et al. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol. 1999;1(1):107–125.
  • Tiscione SA, Vivas O, Ginsburg KS, et al. Disease-associated mutations in Niemann-Pick type C1 alter ER calcium signaling and neuronal plasticity. J Cell Biol. 2019;218(12):4141–4156. doi:10.1083/jcb.201903018.
  • Tukachinsky H, Kuzmickas RP, Jao CY, et al. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand. Cell Rep. 2012;2(2):308–320. doi:10.1016/j.celrep.2012.07.010.
  • Wang F, Guo X, Chen W, et al. Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect. Toxicol Appl Pharmacol. 2017;336:49–54. doi:10.1016/j.taap.2017.10.005.
  • Jin J, Wu P, Zhang X, et al. Understanding the interaction of estrogenic ligands with estrogen receptors: a survey of the functional and binding kinetic studies. J Environ Sci Health, Part C. 2020;38(2):142–127. doi:10.1080/26896583.2020.1761204.
  • Steingrimsson S, Thimour-Bergstrom L, Roman-Emanuel C, et al. Triclosan-coated sutures and sternal wound infections: a prospective randomized clinical trial. Eur J Clin Microbiol Infect Dis. 2015;34(12):2331–2338. doi:10.1007/s10096-015-2485-8.
  • Nakamura T, Kashimura N, Noji T, et al. Triclosan-coated sutures reduce the incidence of wound infections and the costs after colorectal surgery: a randomized controlled trial. Surgery. 2013;153(4):576–583. doi:10.1016/j.surg.2012.11.018.
  • Ruiz-Tovar J, Llavero C, Jimenez-Fuertes M, et al. Incisional surgical site infection after abdominal fascial closure with triclosan-coated barbed suture vs triclosan-coated polydioxanone loop suture vs polydioxanone loop suture in emergent abdominal surgery: a randomized clinical trial. J Am Coll Surg. 2020;230(5):766–774. doi:10.1016/j.jamcollsurg.2020.02.031.
  • Mendez-Probst CE, Goneau LW, MacDonald KW, et al. The use of triclosan eluting stents effectively reduces ureteral stent symptoms: a prospective randomized trial. BJU Int. 2012;110(5):749–754. doi:10.1111/j.1464-410X.2011.10903.x.
  • Gee RH, Charles A, Taylor N, et al. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J Appl Toxicol. 2008;28(1):78–91. doi:10.1002/jat.1316.
  • Winitthana T, Lawanprasert S, Chanvorachote P. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLoS One. 2014;9(10):e110851. doi:10.1371/journal.pone.0110851.
  • Lee GA, Choi KC, Hwang KA. Treatment with phytoestrogens reversed triclosan and bisphenol A-induced anti-apoptosis in breast cancer cells. Biomol Ther (Seoul)). 2018;26(5):503–511. doi:10.4062/biomolther.2017.160.
  • Zhang H, Shao X, Zhao H, et al. Integration of metabolomics and lipidomics reveals metabolic mechanisms of triclosan-induced toxicity in human hepatocytes. Environ Sci Technol. 2019;53(9):5406–5415. doi:10.1021/acs.est.8b07281.
  • Henry ND, Fair PA. Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. J Appl Toxicol. 2013;33(4):265–272. doi:10.1002/jat.1736.
  • Ahn KC, Zhao B, Chen J, et al. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: receptor-based bioassay screens. Environ Health Perspect. 2008;116(9):1203–1210. doi:10.1289/ehp.11200.
  • Liu B, Wang Y, Fillgrove KL, et al. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother Pharmacol. 2002;49(3):187–193. doi:10.1007/s00280-001-0399-x.
  • Deepa PR, Vandhana S, Jayanthi U, et al. Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells. Basic Clin Pharmacol Toxicol. 2012;110(6):494–503. doi:10.1111/j.1742-7843.2011.00844.x.
  • Lu SY, Archer MC. Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis. 2005;26(1):153–157. doi:10.1093/carcin/bgh278.
  • Sadowski MC, Pouwer RH, Gunter JH, et al. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget. 2014;5(19):9362–9381. doi:10.18632/oncotarget.2433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.