286
Views
2
CrossRef citations to date
0
Altmetric
Articles

Photo-enhanced enzyme-like activities of BiOBr/PtRu hybrid nanostructures

, ORCID Icon, & ORCID Icon

References

  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583. doi:10.1038/nnano.2007.260.
  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093. doi:10.1039/c3cs35486e.
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076. doi:10.1039/c8cs00457a.
  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–4412. doi:10.1021/acs.chemrev.8b00672.
  • Meng Y, Li W, Pan X, et al. Applications of nanozymes in the environment. Environ Sci: Nano. 2020;7(5):1305–1318. doi:10.1039/C9EN01089K.
  • Jia H, Yang D, Han X, et al. Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale. 2016;8(11):5938–5945. doi:10.1039/c6nr00860g.
  • Chen W, Chen J, Liu A, et al. Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem. 2011;3(7):1151–1154. doi:10.1002/cctc.201100064.
  • Liu X, Wang Q, Zhao H, et al. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137(19):4552–4558. doi:10.1039/c2an35700c.
  • Han Q, Wang X, Liu X, et al. MoO3-x nanodots with dual enzyme mimic activities as multifunctional modulators for amyloid assembly and neurotoxicity. J Colloid Interface Sci. 2019;539:575–584. doi:10.1016/j.jcis.2018.12.093.
  • Li D, Garisto SL, Huang PJ, et al. Fluorescent detection of fluoride by CeO2 nanozyme oxidation of amplex red. Inorg Chem Commun. 2019;106:38–42. doi:10.1016/j.inoche.2019.05.028.
  • Vallabani NVS, Vinu A, Singh S, et al. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci. 2020;567:154–164. doi:10.1016/j.jcis.2020.01.099.
  • André R, Natálio F, Humanes M, et al. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater. 2011;21(3):501–509. doi:10.1002/adfm.201001302.
  • Jv Y, Li B, Cao R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun (Camb).). 2010;46(42):8017–8019. doi:10.1039/c0cc02698k.
  • He W, Wamer W, Xia Q, et al. Enzyme-like activity of nanomaterials. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2014;32(2):186–211. doi:10.1080/10590501.2014.907462.
  • He W, Liu Y, Yuan J, et al. Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials. 2011;32(4):1139–1147. doi:10.1016/j.biomaterials.2010.09.040.
  • Li W, Zhi X, Yang J, et al. Colorimetric detection of cysteine and homocysteine based on an oligonucleotide-stabilized Pd nanozyme. Anal Methods. 2016;8(25):5111–5116. doi:10.1039/C6AY01097K.
  • Dutta AK, Maji SK, Srivastava DN, et al. Synthesis of FeS and FeSe nanoparticles from a single source precursor: a study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl Mater Interfaces. 2012;4(4):1919–1927. doi:10.1021/am300408r.
  • Borthakur P, Das MR, Szunerits S, et al. CuS decorated functionalized reduced graphene oxide: a dual responsive nanozyme for selective detection and photoreduction of Cr(VI) in an aqueous medium. ACS Sustain Chem Eng. 2019;7(19):16131–16143. doi:10.1021/acssuschemeng.9b03043.
  • Miao L, Jiao L, Tang Q, et al. A nanozyme-linked immunosorbent assay for dual-modal colorimetric and ratiometric fluorescent detection of cardiac troponin I. Sensor Actuat B–Chem. 2019;288:60–64. doi:10.1016/j.snb.2019.02.111.
  • Tao Y, Li M, Ren J, et al. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44(23):8636–8663. doi:10.1039/c5cs00607d.
  • Liu B, Liu J. Surface modification of nanozymes. Nano Res. 2017;10(4):1125–1148. doi:10.1007/s12274-017-1426-5.
  • Luo W, Zhu C, Su S, et al. Self-catalyzed, Self-limiting growth of glucose oxidase-mimicking gold nanoparticles. ACS Nano. 2010;4(12):7451–7458. doi:10.1021/nn102592h.
  • Sun D, Pang X, Cheng Y, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano. 2020;14(2):2063–2076. doi:10.1021/acsnano.9b08667.
  • Jiang Z, Li H, Deng Y, et al. Blue light-gated reversible silver nanozyme reaction networks that achieve life-like adaptivity. ACS Sustain Chem Eng. 2020;8(13):5076–5081. doi:10.1021/acssuschemeng.9b07009.
  • Gupta A, Das R, Tonga GY, et al. Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano. 2018;12(1):89–94. doi:10.1021/acsnano.7b07496.
  • Fan H, Li Y, Liu J, et al. Plasmon-enhanced oxidase-like activity and cellular effect of Pd-coated gold nanorods. ACS Appl Mater Interfaces. 2019;11(49):45416–45426. doi:10.1021/acsami.9b16286.
  • Xi J, Wei G, Wu Q, et al. Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater Sci. 2019;7(10):4131–4141. doi:10.1039/c9bm00705a.
  • Zhang J, Liu J. Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale. 2020;12(5):2914–2923. doi:10.1039/c9nr10822j.
  • Liu C, Yan Y, Zhang X, et al. Regulating the pro- and anti-oxidant capabilities of bimetallic nanozymes for the detection of Fe2+ and protection of Monascus pigments. Nanoscale. 2020;12(5):3068–3075. doi:10.1039/c9nr10135g.
  • Cui Z, Song H, Ge S, et al. Fabrication of BiOCl/BiOBr hybrid nanosheets with enhanced superoxide radical dominating visible light driven photocatalytic activity. Appl Surf Sci. 2019;467/468:505–513. doi:10.1016/j.apsusc.2018.10.181.
  • Zhang L, Jia H, Liu C, et al. Enhanced generation of reactive oxygen species and photocatalytic activity by Pt-based metallic nanostructures: the composition matters. J Environ Sci Health C: Environ Carcinog Ecotoxicol Rev. 2019;37(1):1–13. doi:10.1080/10590501.2018.1555317.
  • Zhang HJ, Toshima N. Preparation of novel Au/Pt/Ag trimetallic nanoparticles and their high catalytic activity for aerobic glucose oxidation. Appl. Catal. A – Gen. 2011; 400(1/2):9–13. doi:10.1016/j.apcata.2011.03.015.
  • He W, Cai J, Jiang X, et al. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO2 nanostructures with enhanced activity. Phys Chem Chem Phys. 2018;20(23):16117–16125. doi:10.1039/c8cp01978a.
  • Lee S, Cho I, Sohn Y. Hierarchical BiOBr, AgBr/BiOBr and BiOBrxI1-x nano-assembled microspheres for photocatalytic methyl orange treatment. J Nanosci Nanotechnol. 2015;15(11):8362–8369. doi:10.1166/jnn.2015.11466.
  • Xu C, Wang L, Mu X, et al. Nanoporous PtRu alloys for electrocatalysis. Langmuir. 2010;26(10):7437–7443. doi:10.1021/la9041474.
  • Yang J, Wang D, Han H, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res. 2013;46(8):1900–1909. doi:10.1021/ar300227e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.