163
Views
0
CrossRef citations to date
0
Altmetric
Articles

Antibody-based detection of lysine modification of hepatic protein in mice treated with retrorsine

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & show all

References

  • Stegelmeier BL, Edgar JA, Colegate SM, et al. Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins. 1999;8(1):95–116.
  • Edgar JA, Molyneux RJ, Colegate SM. Pyrrolizidine alkaloids: potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease. Chem Res Toxicol. 2015;28(1):4–20. doi:10.1021/tx500403t.
  • Mattocks AR. Chemistry and Toxicology of Pyrrolizidine Alkaloids. London: Academic Press; 1986.
  • Roeder E. Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie. 2000;55(10):711–726.
  • Roeder E. Medicinal plants in Europe containing pyrrolizidine alkaloids. Pharmazie. 1995;50(2):83–98.
  • Smith LW, Culvenor CC. Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod. 1981;44(2):129–152. doi:10.1021/np50014a001.
  • Li N, Xia Q, Ruan J, et al. Hepatotoxicity and tumorigenicity induced by metabolic activation of pyrrolizidine alkaloids in herbs. Curr Drug Metab. 2011;12(9):823–834. doi:10.2174/138920011797470119.
  • Fu PP, Xia Q, Ming WC, et al. Detection, hepatotoxicity, and tumorigenicity of pyrrolizidine alkaloids in Chinese herbal plants and herbal dietary supplements. J Food Drug Anal. 2007; 15:400–415.
  • Chojkier M. Hepatic sinusoidal-obstruction syndrome: toxicity of pyrrolizidine alkaloids. J Hepatol. 2003;39(3):437–446. doi:10.1016/S0168-8278(03)00231-9.
  • Chen Z, Huo JR. Hepatic veno-occlusive disease associated with toxicity of pyrrolizidine alkaloids in herbal preparations. Neth J Med. 2010;68(6):252–260.
  • Ruan JQ, Liao C, Ye Y, et al. Lack of metabolic activation and predominant formation of an excreted metabolite of nontoxic platynecine-type pyrrolizidine alkaloids. Chem Res Toxicol. 2014;27(1):7–16. doi:10.1021/tx4004159.
  • Ruan JQ, Yang MB, Fu PP, et al. Metabolic activation of pyrrolizidine alkaloids: insights into the structural and enzymatic basis. Chem Res Toxicol. 2014;27(6):1030–1039. doi:10.1021/tx500071q.
  • Fu PP, Xia Q, Lin G, et al. Pyrrolizidine alkaloids-genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev. 2004;36(1):1–55. doi:10.1081/dmr-120028426.
  • Willmot FC, Robertson GW. Senecio disease or cirrhosis of the liver due to Senecio poisoning. Lancet. 1920;196(5069):848–849. doi:10.1016/S0140-6736(01)00020-4.
  • Dai N, Yu YC, Ren TH, et al. Gynura root induces hepatic veno-occlusive disease: a case report and review of the literature. World J Gastroenterol. 2007;13(10):1628–1631. doi:10.3748/wjg.v13.i10.1628.
  • Fu PP, Xia Q, He X, et al. Detection of pyrrolizidine alkaloid DNA Adducts in livers of cattle poisoned with Heliotropium europaeum. Chem Res Toxicol. 2017;30(3):851–858. doi:10.1021/acs.chemrestox.6b00456.
  • Yang X, Li W, Sun Y, et al. Comparative study of hepatotoxicity of pyrrolizidine alkaloids retrorsine and monocrotaline. Chem Res Toxicol. 2017;30(2):532–539. doi:10.1021/acs.chemrestox.6b00260.
  • Mingatto FE, Dorta DJ, dos Santos AB, et al. Dehydromonocrotaline inhibits mitochondrial complex I. A potential mechanism accounting for hepatotoxicity of monocrotaline. Toxicon. 2007;50(5):724–730. doi:10.1016/j.toxicon.2007.06.006.
  • Jiang Y, Fu PP, Lin G. Hepatotoxicity of naturally occuring pyrrolizidine alkaloids. Asian J Pharmacokinet Pharmacodyn. 2006; 6:187–192.
  • Mattocks AR, Driver HE, Barbour RH, et al. Metabolism and toxicity of synthetic analogues of macrocyclic diester pyrrolizidine alkaloids. Chem Biol Interact. 1986;58(1):95–108. doi:10.1016/S0009-2797(86)80089-8.
  • Lin G, Cui YY, Hawes EM. Microsomal formation of a pyrrolic alcohol glutathione conjugate of clivorine. Firm evidence for the formation of a pyrrolic metabolite of an otonecine-type pyrrolizidine alkaloid. Drug Metab Dispos. 1998;26(2):181–184.
  • Lin G, Cui YY, Hawes EM. Characterization of rat liver microsomal metabolites of clivorine, an hepatotoxic otonecine-type pyrrolizidine alkaloid. Drug Metab Dispos. 2000;28(12):1475–1483.
  • Lin G, Wang JY, Li N, et al. Hepatic sinusoidal obstruction syndrome associated with consumption of Gynura segetum. J Hepatol. 2011;54(4):666–673. doi:10.1016/j.jhep.2010.07.031.
  • Fashe MM, Juvonen RO, Petsalo A, et al. In silico prediction of the site of oxidation by cytochrome P450 3A4 that leads to the formation of the toxic metabolites of pyrrolizidine alkaloids. Chem Res Toxicol. 2015;28(4):702–710. doi:10.1021/tx500478q.
  • Yan CC, Huxtable RJ. Relationship between glutathione concentration and metabolism of the pyrrolizidine alkaloid, monocrotaline, in the isolated, perfused liver. Toxicol Appl Pharmacol. 1995;130(1):132–139. doi:10.1006/taap.1995.1017.
  • Li N, Zhang F, Lian W, et al. Immunoassay approach for diagnosis of exposure to pyrrolizidine alkaloids. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2017; 16:1–13.
  • Mattocks AR, White INH. Estimation of metabolites of pyrrolizidine alkaloids in animal tissues. Anal Biochem. 1970;38(2):529–535. doi:10.1016/0003-2697(70)90478-1.
  • Ruan J, Gao H, Li N, et al. Blood pyrrole-protein adducts-A biomarker of pyrrolizidine alkaloid-induced liver injury in humans . J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33(4):404–421. doi:10.1080/10590501.2015.1096882.
  • Li W, Wang K, Lin G, et al. Lysine adduction by reactive metabolite(s) of monocrotaline. Chem Res Toxicol. 2016;29(3):333–341. doi:10.1021/acs.chemrestox.5b00488.
  • Pumford NR, Roberts DW, Benson RW, et al. Immunochemical quantitation of 3-(cystein-S-yl) acetaminophen protein adducts in subcellular liver fractions following a hepatotoxic dose of acetaminophen. Biochem Pharmacol. 1990; 40(3):573–579. doi:10.1016/0006-2952(90)90558-3.
  • Martin JL, Meinwald J, Radford P, et al. Stereoselective metabolism of halothane enantiomers to trifluoroacetylated liver proteins. Drug Metab Rev. 1995; 27(1–2):179–189. doi:10.3109/03602539509029822.
  • Rombach EM, Hanzlik RP. Detection of adducts of bromobenzene 3,4-oxide with rat liver microsomal protein sulfhydryl groups using specific antibodies. Chem Res Toxicol. 1999; 12(2):159–163. doi:10.1021/tx980177v.
  • Zheng J, Hammock BD. Development of polyclonal antibodies for detection of protein modification by 1,2-naphthoquinone. Chem Res Toxicol. 1996; 9(5):904–909. doi:10.1021/tx960014b.
  • Halmes NC, McMillan DC, Oatis JE, Jr, et al. Immunochemical detection of protein adducts in mice treated with trichloroethylene. Chem Res Toxicol. 1996;9(2):451–456. doi:10.1021/tx950171v.
  • Shen S, Zhang F, Zeng S, et al. Development of enantioselective polyclonal antibodies to detect styrene oxide protein adducts. Anal Chem. 2009; 81(7):2668–2677. doi:10.1021/ac8023262.
  • Chen M, Li L, Zhong D, et al. 9-Glutathionyl-6,7-dihydro-1-hydroxymethyl-5H-pyrrolizine is the major pyrrolic glutathione conjugate of retronecine-type pyrrolizidine alkaloids in liver microsomes and in rats. Chem Res Toxicol. 2016; 29(2):180–189. doi:10.1021/acs.chemrestox.5b00427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.