228
Views
3
CrossRef citations to date
0
Altmetric
Articles

Three dimensional graphene materials doped with heteroatoms for extraction and adsorption of environmental pollutants in wastewater

, , ORCID Icon, , , , & show all

References

  • Zhu G, He Z, Chen J, et al. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Nanoscale. 2014;6(2):1079–1085. doi:10.1039/c3nr04495e.
  • Park S, Kang SO, Jung E, Park S, Park HS. Surface modification and partial reduction of three-dimensional macroporous graphene oxide scaffolds for greatly improved adsorption capacity. RSC Adv. 2014; 4(2):899–902. doi:10.1039/C3RA45697H.
  • Wang Y, Guo L, Qi P, Liu X, Wei G. Synthesis of three-dimensional graphene-based hybrid materials for water purification: a review. Nanomaterials. 2019;9(8):1123. doi:10.3390/nano9081123.
  • He F, Niu N, Qu F, et al. Synthesis of three-dimensional reduced graphene oxide layer supported cobalt nanocrystals and their high catalytic activity in F-T CO2 hydrogenation. Nanoscale. 2013; 5(18):8507–8516. doi:10.1039/c3nr03038e.
  • Chen Y, Prasad KP, Wang X, et al. Enzymeless multi-sugar fuel cells with high power output based on 3D graphene-Co3O4 hybrid electrodes. Phys Chem Chem Phys. 2013;15(23):9170–9176. doi:10.1039/c3cp51410b.
  • Avdoshenko SM, da Rocha CG, Cuniberti G. Nanoscale ear drum: graphene based nanoscale sensors. Nanoscale. 2012;4(10):3168–3174. doi:10.1039/c2nr30097d.
  • Shehzad K, Xu Y, Gao C, Duan X. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem Soc Rev. 2016;45(20):5541–5588. doi:10.1039/c6cs00218h.
  • Zhao F, Zhao Y, Chen N, Qu L. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly. Mater Today. 2016; 19(3):146–156. doi:10.1016/j.mattod.2015.10.010.
  • Han DD, Zhang YL, Ma JN, Liu YQ, Han B, Sun HB. Light-mediated manufacture and manipulation of actuators. Adv Mater. 2016; 28(38):8328–8343. doi:10.1002/adma.201602211.
  • Kong L, Chen W. Carbon nanotube and graphene-based bioinspired electrochemical actuators. Adv Mater. 2014;26(7):1025–1043. doi:10.1002/adma.201303432.
  • Guan LZ, Zhao L, Wan YJ, Tang LC. Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale. 2018;10(31):14788–14811. doi:10.1039/c8nr03044h.
  • Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Müllen K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc. 2012;134(22):9082–9085. doi:10.1021/ja3030565.
  • Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater. 2013;25(21):2909–2914. doi:10.1002/adma.201300445.
  • Nguyen DD, Tai N-H, Lee S-B, Kuo WS. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci. 2012;5(7):7908–7912. doi:10.1039/c2ee21848h.
  • Toffoli AL, Maciel EVS, Fumes BH, Lanças FM. The role of graphene-based sorbents in modern sample preparation techniques. J Sep Sci. 2018;41(1):288–302. doi:10.1002/jssc.201700870.
  • Ehtesabi H, Bagheri Z, Yaghoubi-Avini M. Application of three-dimensional graphene hydrogels for removal of ofloxacin from aqueous solutions. Environ Nanotechnol Monit Manage. 2019;12:100274. doi:10.1016/j.enmm.2019.100274.
  • Dasgupta A, Rajukumar LP, Rotella C, Lei Y, Terrones M. Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today. 2017;12:116–135. doi:10.1016/j.nantod.2016.12.011.
  • Hiew BYZ, Lee LY, Lee XJ, et al. Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Process Saf Environ Prot. 2018;116:262–286. doi:10.1016/j.psep.2018.02.010.
  • Yagub MT, Sen TK, Afroze S, Ang HM. Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci. 2014;209:172–184. doi:10.1016/j.cis.2014.04.002.
  • Chen Y, Song X, Zhao T, Xiao Y, Wang Y, Chen X. A phosphorylethanolamine-functionalized super-hydrophilic 3D graphene-based foam filter for water purification. J Hazard Mater. 2018;343:298–303. doi:10.1016/j.jhazmat.2017.09.045.
  • Wang W, Gong Q, Chen Z, et al. Adsorption and competition investigation of phenolic compounds on the solid-liquid interface of three-dimensional foam-like graphene oxide. Chem Eng J. 2019; 378:122085. doi:10.1016/j.cej.2019.122085.
  • Chen Z, Jin L, Hao W, Ren W, Cheng H-M. Synthesis and applications of three-dimensional graphene network structures. Mater Today Nano. 2019;5:100027. doi:10.1016/j.mtnano.2019.01.002.
  • Putri LK, Ong WJ, Chang WS, Chai SP. Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci. 2015;358:2–14. doi:10.1016/j.apsusc.2015.08.177.
  • Liu L, Zhang L, Gao H, Zhao J. Structure, energetics, and heteroatom doping of armchair carbon nanotori. Carbon. 2011;49(13):4518–4523. doi:10.1016/j.carbon.2011.06.062.
  • Zhai P, Wei TC, Chang YH, et al. High electrocatalytic and wettable nitrogen-doped microwave-exfoliated graphene nanosheets as counter electrode for dye-sensitized solar cells. Small. 2014;10(16):3347–3353. doi:10.1002/smll.201400628.
  • Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano. 2010;4(10):6203–6211. doi:10.1021/nn1016428.
  • Cai ZX, Song XH, Chen YY, Wang YR, Chen X. 3D nitrogen-doped graphene aerogel: a low-cost, facile prepared direct electrode for H2O2 sensing. Sens Actuators B. 2016;222:567–573. doi:10.1016/j.snb.2015.08.094.
  • Hou S, Cai X, Wu H, et al. Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy Environ Sci. 2013;6(11):3356–3362. doi:10.1039/c3ee42516a.
  • Yeh MH, Leu YA, Chiang WH, et al. Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: heteroatom doping level effect on tri-iodide reduction reaction. J Power Sources. 2018;375:29–36. doi:10.1016/j.jpowsour.2017.11.041.
  • Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater. 2012;22(17):3634–3640. doi:10.1002/adfm.201200186.
  • Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed Engl. 2015;54(47):14031–14035. doi:10.1002/anie.201507381.
  • Kotal M, Kim H, Roy S, Oh I-K. Sulfur and nitrogen co-doped holey graphene aerogel for structurally resilient solid-state supercapacitors under high compressions. J Mater Chem A. 2017;5(33):17253–17266. doi:10.1039/C7TA05237E.
  • Ohshima H, Tatemichi M, Sawa T. Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys. 2003;417(1):3–11. doi:10.1016/S0003-9861(03)00283-2.
  • Guo ZY, Feng YF, Chen YY, Yao QH, Luo HZ, Chen X. A taurine-functionalized 3D graphene-based foam for electrochemical determination of hydrogen peroxide. Talanta. 2020;208:120356. doi:10.1016/j.talanta.2019.120356.
  • Liu X, Ma R, Wang X, et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ Pollut. 2019;252(Pt A):62–73. doi:10.1016/j.envpol.2019.05.050.
  • Yin K, Wang Q, Lv M, Chen L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019;360:1553–1563. doi:10.1016/j.cej.2018.10.226.
  • Li J, Wang S, Wang F, Wu X, Zhuang X. Environmental separation and enrichment of gold and palladium ions by amino-modified three-dimensional graphene. RSC Adv. 2019;9(5):2816–2821. doi:10.1039/C8RA10506E.
  • Zhan W, Gao L, Fu X, Siyal SH, Sui G, Yang X. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl Surf Sci. 2019;467–468:1122–1133. doi:10.1016/j.apsusc.2018.10.248.
  • Zhang F, Li YH, Li JY, Tang ZR, Xu YJ. 3D graphene-based gel photocatalysts for environmental pollutants degradation. Environ Pollut. 2019;253:365–376. doi:10.1016/j.envpol.2019.06.089.
  • Zhao XR, Xu X, Teng J, et al. Three-dimensional porous graphene oxide-maize amylopectin composites with controllable pore-sizes and good adsorption-desorption properties: Facile fabrication and reutilization, and the adsorption mechanism. Ecotoxicol Environ Saf. 2019;176:11–19. doi:10.1016/j.ecoenv.2019.03.069.
  • Yu S, Wei D, Shi L, Ai Y, Zhang P, Wang X. Three-dimensional graphene/titanium dioxide composite for enhanced U(VI) capture: insights from batch experiments, XPS spectroscopy and DFT calculation. Environ Pollut. 2019;251:975–983. doi:10.1016/j.envpol.2019.04.127.
  • Zhang W, Shi X, Zhang Y, Gu W, Li B, Xian Y. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J Mater Chem A. 2013;1(5):1745–1753. doi:10.1039/C2TA00294A.
  • Wang S, Sun H, Ang H-M, Tadé M. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J. 2013;226:336–347. doi:10.1016/j.cej.2013.04.070.
  • Mi X, Huang G, Xie W, Wang W, Liu Y, Gao J. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions. Carbon. 2012;50(13):4856–4864. doi:10.1016/j.carbon.2012.06.013.
  • Li W, Gao S, Wu L, et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci Rep. 2013;3:2125.
  • Cong HP, Ren XC, Wang P, Yu SH. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano. 2012;6(3):2693–2703. doi:10.1021/nn300082k.
  • Sui Z, Meng Q, Zhang X, Ma R, Cao B. Green synthesis of carbon nanotube graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem. 2012;22(18):8767–8771. doi:10.1039/c2jm00055e.
  • Wu S, Zhang K, Wang X, et al. Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide. Chem Eng J. 2015;262:1292–1302. doi:10.1016/j.cej.2014.10.092.
  • Han Z, Tang Z, Shen S, Zhao B, Zheng G, Yang J. Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci Rep. 2014;4:5025. doi:10.1038/srep05025.
  • Zeng T, Yu Y, Li Z, et al. 3D MnO2 nanotubes@ reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Mater Chem Phys. 2019;231:105–108. doi:10.1016/j.matchemphys.2019.04.019.
  • Zhou Y, Liang CY, Yu JG, Jiang XY. Adsorption properties of a novel 3D graphene/MgO composite for heavy metal ions. J Cent South Univ. 2019;26(4):813–823. doi:10.1007/s11771-019-4051-5.
  • Nasiri R, Arsalani N, Panahian Y. One-pot synthesis of novel magnetic three-dimensional graphene/chitosan/nickel ferrite nanocomposite for lead ions removal from aqueous solution: RSM modelling design. J Cleaner Prod. 2018;201:507–515. doi:10.1016/j.jclepro.2018.08.059.
  • Chen B, Ma Q, Tan C, Lim TT, Huang L, Zhang H. Carbon-based sorbents with three-dimensional architectures for water remediation. Small. 2015;11(27):3319–3336. doi:10.1002/smll.201403729.
  • Zhou F, Yu J, Jiang X. Green synthesis of 3D porous graphene/lignin composites with improved adsorption capacity for heavy metal ions in aqueous solution. Desalin Water Treat. 2018;103:175–181. doi:10.5004/dwt.2018.21899.
  • Ma J, Zhao Q, Zhou L, Wen T, Wang J. Mutual effects of U (VI) and Eu (III) immobilization on interpenetrating 3-dimensional MnO2/graphene oxide composites. Sci Total Environ. 2019;695:133696. doi:10.1016/j.scitotenv.2019.133696.
  • Jiao H, Li Y, Gao K, et al. Efficient removal of radioactive iodide by three-dimensional Cu@Cu2O: an adsorption and electrocatalytic oxidation coupling process. Colloids Surf A. 2020;602:124964. doi:10.1016/j.colsurfa.2020.124964.
  • Cai Y, Wang X, Feng J, et al. Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration. Environ Pollut. 2019;249:434–442. doi:10.1016/j.envpol.2019.03.013.
  • Ashraf M, Khan I, Usman M, et al. Hematite and magnetite nanostructures for green and sustainable energy harnessing and environmental pollution control: a review. Chem Res Toxicol. 2020;33(6):1292–1311. doi:10.1021/acs.chemrestox.9b00308.
  • Chowdhury S, Pan S, Balasubramanian R, Das P. Three-dimensional graphene-based macroscopic assemblies as super-absorbents for oils and organic solvents. In A New Generation Material Graphene: Applications in Water Technology. 2019:43–68.
  • Liao C, Zhao XR, Jiang XY, Teng J, Yu JG. Hydrothermal fabrication of novel three-dimensional graphene oxide-pentaerythritol composites with abundant oxygen-containing groups as efficient adsorbents. Microchem J. 2020;152:104288. doi:10.1016/j.microc.2019.104288.
  • Zheng X, Xiong X, Yang J, Chen D, Jian R, Lin L. A strong and compressible three dimensional graphene/polyurushiol composite for efficient water cleanup. Chem Eng J. 2018;333:153–161. doi:10.1016/j.cej.2017.09.146.
  • Guan Y, Cheng F, Pan Z. Superwetting polymeric three dimensional (3d) porous materials for oil/water separation: a review. Polymers. 2019;11(5):806. doi:10.3390/polym11050806.
  • Li N, Yue Q, Gao B, Xu X, Su R, Yu B. One-step synthesis of peanut hull/graphene aerogel for highly efficient oil-water separation. J Cleaner Prod. 2019;207:764–771. doi:10.1016/j.jclepro.2018.10.038.
  • Sun H, Xu Z, Gao C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater. 2013;25(18):2554–2560. doi:10.1002/adma.201204576.
  • Wu XL, Wen T, Guo HL, Yang S, Wang X, Xu AW. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano. 2013;7(4):3589–3597. doi:10.1021/nn400566d.
  • Chen S, He G, Hu H, et al. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy Environ Sci. 2013;6(8):2435–2439. doi:10.1039/c3ee41436a.
  • Bi H, Xie X, Yin K, et al. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater. 2012;22(21):4421–4425. doi:10.1002/adfm.201200888.
  • Wang J, Shi Z, Fan J, Ge Y, Yin J, Hu G. Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids. J Mater Chem. 2012;22(42):22459–22466. doi:10.1039/c2jm35024f.
  • Tiwari JN, Mahesh K, Le NH, et al. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions. Carbon. 2013;56:173–182. doi:10.1016/j.carbon.2013.01.001.
  • Li H, Liu L, Yang F. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. J Mater Chem A. 2013;1(10):3446–3453. doi:10.1039/c3ta00166k.
  • Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L. A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed Engl. 2012;51(45):11371–11375. doi:10.1002/anie.201206554.
  • Niu Z, Chen J, Hng HH, Ma J, Chen X. A leavening strategy to prepare reduced graphene oxide foams. Adv Mater. 2012;24(30):4144–4150. doi:10.1002/adma.201200197.
  • Chi C, Xu H, Zhang K, et al. 3D hierarchical porous graphene aerogels for highly improved adsorption and recycled capacity. Mater Sci Eng B. 2015;194:62–67. doi:10.1016/j.mseb.2014.12.026.
  • Zhan Y, He S, Hu J, et al. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. J Hazard Mater. 2020;388:121752. doi:10.1016/j.jhazmat.2019.121752.
  • Zhou L, Xu Z. Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J Hazard Mater. 2020;388:121804. doi:10.1016/j.jhazmat.2019.121804.
  • Hu J, Zhu J, Ge S, et al. Biocompatible, hydrophobic and resilience graphene/chitosan composite aerogel for efficient oil-water separation. Surf Coat Technol. 2020;385:125361. doi:10.1016/j.surfcoat.2020.125361.
  • Hou P, Xing G, Tian L, et al. Hollow carbon spheres/graphene hybrid aerogels as high-performance adsorbents for organic pollution. Sep Purif Technol. 2019;213:524–532. doi:10.1016/j.seppur.2018.12.032.
  • Song X, Lin L, Rong M, Wang Y, Xie Z, Chen X. Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel. Carbon. 2014;80:174–182. doi:10.1016/j.carbon.2014.08.054.
  • Gupta K, Khatri OP. Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: plausible adsorption pathways. J Colloid Interface Sci. 2017;501:11–21. doi:10.1016/j.jcis.2017.04.035.
  • Kim H, Kang SO, Park S, Park HS. Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J Ind Eng Chem. 2015; 21:1191–1196. doi:10.1016/j.jiec.2014.05.033.
  • He K, Chen G, Zeng G, et al. Three-dimensional graphene supported catalysts for organic dyes degradation. Appl Catal B. 2018;228:19–28. doi:10.1016/j.apcatb.2018.01.061.
  • Kheirabadi M, Samadi M, Asadian E, et al. Well-designed Ag/ZnO/3D graphene structure for dye removal: adsorption, photocatalysis and physical separation capabilities. J Colloid Interface Sci. 2019;537:66–78. doi:10.1016/j.jcis.2018.10.102.
  • Arabkhani P, Asfaram A. Development of a novel three-dimensional magnetic polymer aerogel as an efficient adsorbent for malachite green removal. J Hazard Mater. 2020;384:121394. doi:10.1016/j.jhazmat.2019.121394.
  • Song X, Chen Y, Rong M, et al. A phytic acid induced super-amphiphilic multifunctional 3D graphene-based foam. Angew Chem Int Ed Engl. 2016;55(12):3936–3941. doi:10.1002/anie.201511064.
  • Zhao J, Ren W, Cheng H-M. Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. J Mater Chem. 2012;22(38):20197–20202. doi:10.1039/c2jm34128j.
  • Qiu X, Wang S, Miao S, Suo H, Xu H, Hu Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. J Hazard Mater. 2021;401:123353. doi:10.1016/j.jhazmat.2020.123353.
  • Hassan AM, Ibrahim WAW, Bakar MB, et al. New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. J Environ Manage. 2020;253:109658 doi:10.1016/j.jenvman.2019.109658.
  • Rong Y, Huang Y, Jin P, et al. Highly efficient removal of cationic, anionic and neutral dyes by hierarchically porous structured three-dimensional magnetic sulfur/nitrogen co-doped reduced graphene oxide nanohybrid. J Water Process Eng. 2020;37:101345. doi:10.1016/j.jwpe.2020.101345.
  • Nasiri R, Arsalani N. Synthesis and application of 3D graphene nanocomposite for the removal of cationic dyes from aqueous solutions: response surface methodology design. J Cleaner Prod. 2018;190:63–71. doi:10.1016/j.jclepro.2018.04.143.
  • Chen F, Li S, Chen Q, Zheng X, Liu P, Fang S. 3D graphene aerogels-supported Ag and Ag@ Ag3PO4 heterostructure for the efficient adsorption-photocatalysis capture of different dye pollutants in water. Mater Res Bull. 2018;105:334–341. doi:10.1016/j.materresbull.2018.05.013.
  • Wei XN, Ou CL, Fang SS, Zheng XC, Zheng GP, Guan XX. One-pot self-assembly of 3D CdS-graphene aerogels with superior adsorption capacity and photocatalytic activity for water purification. Powder Technol. 2019; 345:213–222. doi:10.1016/j.powtec.2019.01.012.
  • Hiew BYZ, Lee LY, Lai KC, et al. Adsorptive decontamination of diclofenac by three-dimensional graphene-based adsorbent: response surface methodology, adsorption equilibrium, kinetic and thermodynamic studies. Environ Res. 2019;168:241–253. doi:10.1016/j.envres.2018.09.030.
  • Zhang Y, Zhou H, Zhang ZH, et al. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils. J Chromatogr A. 2017;1489:29–38. doi:10.1016/j.chroma.2017.02.010.
  • Zarei M, Beheshti Nahand F, Khataee A, Hasanzadeh A. Removal of nalidixic acid from aqueous solutions using a cathode containing three-dimensional graphene. J Water Process Eng. 2019;32:100978. doi:10.1016/j.jwpe.2019.100978.
  • Ghanbarlou H, Nasernejad B, Fini MN, Simonsen ME, Muff J. Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system. Chem Eng J. 2020;395:125025. doi:10.1016/j.cej.2020.125025.
  • Yang Q, Lu L, Xu Q, Tang S, Yu Y. Using post-graphene 2D materials to detect and remove pesticides: recent advances and future recommendations. Bull Environ Contam Toxicol. 2020. doi:10.1007/s00128-020-02868-z.
  • Zhang M, Ma G, Zhang L, et al. Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis. Analyst. 2019;144(17):5164–5171. doi:10.1039/c9an00927b.
  • Wang S, Li X, Li M, et al. Self-assembled three-dimensional microporous rGO/PNT/Fe3O4 hydrogel sorbent for magnetic preconcentration of multi-residue insecticides. Appl Sci. 2020;10(16):5665. doi:10.3390/app10165665.
  • Sun P, Gao YL, Xu C, Lian YF. Determination of six organophosphorus pesticides in water samples by three-dimensional graphene aerogel-based solid-phase extraction combined with gas chromatography/mass spectrometry. RSC Adv. 2018;8(19):10277–10283. doi:10.1039/C7RA13316B.
  • Choi Y, Sinha A, Im J, Jung H, Kim J. Hierarchically porous composite scaffold composed of SBA-15 microrods and reduced graphene oxide functionalized with cyclodextrin for water purification. ACS Appl Mater Interfaces. 2019;11(17):15764–15772. doi:10.1021/acsami.9b01845.
  • Cen J, Wei S, Nan H, et al. Incorporation of carbon nanotubes into graphene for highly efficient solid-phase microextraction of benzene homologues. Microchem J. 2018;139:203–209. doi:10.1016/j.microc.2018.02.032.
  • Song C, Guo BB, Sun XF, Wang SG, Li YT. Enrichment and degradation of tetracycline using three-dimensional graphene/MnO2 composites. Chem Eng J. 2019;358:1139–1146. doi:10.1016/j.cej.2018.10.119.
  • Yang Y, Xu L, Li W, Fan W, Song S, Yang J. Adsorption and degradation of sulfadiazine over nanoscale zero-valent iron encapsulated in three-dimensional graphene network through oxygen-driven heterogeneous Fenton-like reactions. Appl Catal B. 2019;259:118057. doi:10.1016/j.apcatb.2019.118057.
  • Lin L, Peng H, Liu Z. Synthesis challenges for graphene industry. Nat Mater. 2019;18(6):520–524. doi:10.1038/s41563-019-0341-4.
  • Tahriri M, Del Monico M, Moghanian A, et al. Graphene and its derivatives: Opportunities and challenges in dentistry. Mater Sci Eng C: Mater Biol Appl. 2019;102:171–185. doi:10.1016/j.msec.2019.04.051.
  • Ahmed M, Giwa A, Hasan SW. Challenges and opportunities of graphene-based materials in current desalination and water purification technologies. In Nanoscale Materials in Water Purification; 2019. p. 735–758.
  • Ahmed F, Rodrigues DF. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study. J Hazard Mater. 2013;256–257:33–39. doi:10.1016/j.jhazmat.2013.03.064.
  • Jastrzębska AM, Olszyna AR. The ecotoxicity of graphene family materials: current status, knowledge gaps and future needs. J Nanopart Res. 2015;17(1):40–45. doi:10.1007/s11051-014-2817-0.
  • Combarros R, Collado S, Díaz M. Toxicity of graphene oxide on growth and metabolism of Pseudomonas putida. J Hazard Mater. 2016;310:246–252. doi:10.1016/j.jhazmat.2016.02.038.
  • Amani H, Mostafavi E, Arzaghi H, et al. Three-dimensional graphene foams: Synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater Sci Eng. 2019;5(1):193–214. doi:10.1021/acsbiomaterials.8b00658.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.