463
Views
10
CrossRef citations to date
0
Altmetric
Articles

Molecular toxicology and carcinogenesis of fumonisins: a review

ORCID Icon &

References

  • Bezuidenhout SC, Gelderblom WCA, Gorst-Allman CP, et al. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. Int Symp Chem Nat Prod. 1988;1988:217. doi:10.24496/intnaturalprod.1988.0_217.
  • Gelderblom WC, Jaskiewicz K, Marasas WF, et al. Fumonisins-novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol. 1988;54(7):1806–1811. doi:10.1128/AEM.54.7.1806-1811.1988.
  • Marasas WF. Discovery and occurrence of the fumonisins: a historical perspective. Environ Heal Perspect. 2001;109(Suppl 2):239–243. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1240671/. doi:10.2307/3435014.
  • Ross PF, Ledet AE, Owens DL, et al. Experimental equine leukoencephalomalacia, toxic hepatosis, and encephalopathy caused by corn naturally contaminated with fumonisins. J Vet Diagn Invest. 1993;5(1):69–74. doi:10.1177/104063879300500115.
  • Thiel PG, Sydenham EW, Shephard GS, et al. Study of the reproducibility characteristics of a liquid-chromatographic method for the determination of fumonisins b-1 and b-2 in corn - IUPAC collaborative study. J AOAC Int. 1993;76(2):361–366. doi:10.1093/jaoac/76.2.361.
  • Nelson PE, Plattner RD, Shackelford DD, Desjardins AE. Fumonisin B1 production by Fusarium species other than F. moniliforme in section Liseola and by some related species. Appl Environ Microbiol. 1992;58(3):984–989. doi:10.1128/aem.58.3.984-989.1992.
  • Nelson PE, Desjardins AE, Plattner RD. Fumonisins, mycotoxins produced by fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol. 1993;31:233–252. doi:10.1146/annurev.py.31.090193.001313.
  • Onyike NBN, Nelson PE. Fusarium species associated with sorghum grain from Nigeria, Lesotho, and Zimbabwe. Mycologia. 1992;84(3):452–458. doi:10.2307/3760198.
  • Wang E, Ross PF, Wilson TM, Riley RT, Merrill AH. Increases in serum sphingosine and sphinganine and decreases in complex sphingolipids in ponies given feed containing fumonisins, mycotoxins produced by Fusarium moniliforme. J Nutr. 1992;122(8):1706–1716. doi:10.1093/jn/122.8.1706.
  • Merrill AH, Vanechten G, Wang E, Sandhoff K. Fumonisin-B(1) inhibits sphingosine (sphinganine) n-acyltransferase and de-novo sphingolipid biosynthesis in cultured neurons in-situ. J Biol Chem. 1993;268(36):27299–27306.
  • Merrill AH, Jr, Sullards MC, Wang E, Voss KA, Riley RT. Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ Heal Perspect. 2001;109:283–289. doi:10.2307/3435020.
  • Voss KA, Howard PC, Riley RT, Sharma RP, Bucci TJ, Lorentzen RJ. Carcinogenicity and mechanism of action of fumonisin B1: a mycotoxin produced by Fusarium moniliforme (= F. verticillioides). Cancer Detect Prev. 2002;26(1):1–9. doi:10.1016/S0361-090X(02)00011-9.
  • Riley RT, Merrill AH, Jr. Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J Lipid Res. 2019;60(7):1183–1189. doi:10.1194/jlr.S093815.
  • Haliburton JC, Buck WB. Equine leucoencephalomalacia: an historical review. In: Richard JL, Thurston JR, eds. Diagnosis of Mycotoxicoses. Current Topics in Veterinary Medicine and Animal Science. Vol. 33. Dordrecht: Springer; 1986:75–76. 10.1007/978-94-009-4235-6_7
  • Diaz GJ, Boermans HJ. Fumonisin toxicosis in domestic-animals - a review. Vet Hum Toxicol. 1994;36(6):548–555.
  • Haschek WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD. Fumonisin toxicosis in swine: an overview of porcine pulmonary edema and current perspectives. Environ Health Perspect. 2001;109(Suppl. 2):251–257. doi:10.1289/ehp.01109s2251.
  • Ahangarkani F, Rouhi S, Gholamour Azizi I. A review on incidence and toxicity of fumonisins. Toxin Rev. 2014;33(3):95–100. doi:10.3109/15569543.2013.871563.
  • Cawood ME, Gelderblom WCA, Alberts JF, Snyman SD. Interaction of c-14-labeled fumonisin-b mycotoxins with primary rat hepatocyte cultures. Food Chem Toxicol. 1994;32(7):627–632. doi:10.1016/0278-6915(94)90006-X.
  • Gelderblom WCA, Cawood ME, Snyman SD, Marasas WFO. Fumonisin B-1 dosimetry in relation to cancer initiation in rat-liver. Carcinogenesis. 1994;15(2):209–214. doi:10.1093/carcin/15.2.209.
  • Riley RT, Voss KA, Yoo KS, Gelderblom WCA, Merrill AH. Mechanism of fumonisin toxicity and carcinogenesis. J Food Prot. 1994;57(7):638–645. doi:10.4315/0362-028x-57.7.638.
  • Gelderblom WC, Kriek NP, Marasas WF, Thiel PG. Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1, in rats. Carcinogenesis. 1991;12(7):1247–1251. doi:10.1093/carcin/12.7.1247.
  • Fincham J, Marasas W, Taljaard J, et al. Atherogenic effects in a non-human primate of Fusarium moniliforme cultures added to a carbohydrate diet. Atherosclerosis. 1992;94(1):13–25. doi:10.1016/0021-9150(92)90183-H.
  • Qureshi MA, Heggen CL, Hussain I. Avian macrophage: effector functions in health and disease. Dev Comp Immunol. 2000;24(2–3):103–119. doi:10.1016/S0145-305X(99)00067-1.
  • Rheeder JP, Marasas WFO, Vismer HF. Production of fumonisin analogs by fusarium species. Appl Environ Microbiol. 2002;68(5):2101–2105. doi:10.1128/AEM.68.5.2101-2105.2002.
  • Musser SM, Gay ML, Mazzola EP, Plattner RD. Identification of a new series of fumonisins containing 3-hydroxypyridine. J Nat Prod. 1996;59(10):970–972. doi:10.1021/np960349t.
  • Seo J-A, Kim J-C, Lee Y-W. N-acetyl derivatives of type C fumonisins produced by Fusarium oxysporum. J Nat Prod. 1999;62(2):355–357. doi:10.1021/np980371h.
  • Humpf HU, Voss KA. Effects of thermal food processing on the chemical structure and toxicity of fumonisin mycotoxins. Mol Nutr Food Res. 2004;48(4):255–269. doi:10.1002/mnfr.200400033.
  • Voss KA, Smith GW, Haschek WM. Fumonisins: toxicokinetics, mechanism of action and toxicity. Anim Feed Sci Technol. 2007;137(3–4):299–325. doi:10.1016/j.anifeedsci.2007.06.007.
  • Hu L, Liu H, Yang J, et al. Free and hidden fumonisins in raw maize and maize-based products from China. Food Addit Contam Part B Surveill. 2019;12(2):90–96. doi:10.1080/19393210.2018.1564371.
  • Dall'Asta C, Galaverna G, Mangia M, Sforza S, Dossena A, Marchelli R. Free and bound fumonisins in gluten-free food products. Mol Nutr Food Res. 2009;53(4):492–499. doi:10.1002/mnfr.200800088.
  • Sydenham E, Shephard GS. Chromatographic and allied methods of analysis for selected mycotoxins. In: Gilbert J, ed. Progress in Food Contaminant Analysis. London: Blackie Publishers; 1996:65–146.
  • Turner NW, Subrahmanyam S, Piletsky SA. Analytical methods for determination of mycotoxins: a review. Anal Chim Acta. 2009;632(2):168–180. doi:10.1016/j.aca.2008.11.010.
  • European Commission, EC. Commission regulation 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuff. Official Journal of the European Union. http://extwprlegs1.fao.org/docs/pdf/eur68134.pdf. Published 2006. Accessed November 24, 2020.
  • USFDA. Guidance for Industry: Fumonisin Levles in Human Foods and Animal Feeds. Nutrition C for FS and A, ed. 2001. https://www.fda.gov/RegulatoryInformation/Guidances/ucm109231.htm. Accessed November 24, 2020.
  • Riley RT, Norred WP, Bacon CW. Fungal toxins in foods: recent concerns. Annu Rev Nutr. 1993;13:167–189. doi:10.1146/annurev.nu.13.070193.001123.
  • Nijs M, Egmond HP, Rombouts FM, Notermans SHW. Identification of hazardous Fusarium secondary metabolites occurring in food raw materials. J Food Safety. 1997;17(3):161–191. doi:10.1111/j.1745-4565.1997.tb00185.x.
  • Farhadi A, Nowrozi H, Kachuei R. Metabolism, toxicity, detoxification, occurrence, intake and legislations of fumonisins - a review. JPRI. 2019;29(6):1–35. doi:10.9734/jpri/2019/v29i630252.
  • Kamle M, Mahato DK, Devi S, Lee KE, Kang SG, Kumar P. Fumonisins: impact on agriculture, food, and human health and their management strategies. Toxins (Basel). 2019;11(6):328. doi:10.3390/toxins11060328.
  • IARC. International agency for research on cancer monographs on the evaluation of carcinogenic risks to humans. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. Lyon, France: World Health Organization. Vol. 8. 2002:227–338. https://monographs.iarc.fr/ENG/Monographs/vol82/mono82.pdf. Accessed February 17, 2018.
  • Wielogorska E, Mooney M, Eskola M, et al. Occurrence and human-health impacts of mycotoxins in Somalia. J Agric Food Chem. 2019;67(7):2052–2060. doi:10.1021/acs.jafc.8b05141.
  • Marasas WFO, Riley RT, Hendricks KA, et al. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr. 2004;134(4):711–716. doi:10.1093/jn/134.4.711.
  • Abdallah MF, Krska R, Sulyok M. Occurrence of ochratoxins, fumonisin B2, aflatoxins (B1 and B2), and other secondary fungal metabolites in dried date palm fruits from Egypt: a mini-survey. J Food Sci. 2018;83(2):559–564. doi:10.1111/1750-3841.14046.
  • Vismer HF, Shephard GS, Rheeder JP, van der Westhuizen L, Bandyopadhyay R. Relative severity of fumonisin contamination of cereal crops in West Africa. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(11):1952–1958. doi:10.1080/19440049.2015.1084654.
  • Cano-Sancho G, Ramos AJ, Marin S, Sanchis V. Occurrence of fumonisins in Catalonia (Spain) and an exposure assessment of specific population groups. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(5):799–808. doi:10.1080/19440049.2011.644813.
  • Esposito F, Fasano E, Scognamiglio G, Nardone A, Triassi M, Cirillo T. Exposure assessment to fumonisins B1, B2 and B3 through consumption of gluten-free foodstuffs intended for people affected by celiac disease. Food Chem Toxicol. 2016;97:395–401. doi:10.1016/j.fct.2016.10.013.
  • Kumi J, Mitchell NJ, Asare GA, et al. Aflatoxins and fumonisins contamination of home-made food (weanimix) from cereal-legume blends for children. Ghana Med J. 2014;48(3):121–126. doi:10.4314/gmj.v48i3.1.
  • Magoha H, Kimanya M, De Meulenaer B, Roberfroid D, Lachat C, Kolsteren P. Risk of dietary exposure to aflatoxins and fumonisins in infants less than 6 months of age in Rombo, Northern Tanzania. Matern Child Nutr. 2016;12(3):516–527. doi:10.1111/mcn.12155.
  • Dupre TV, Siskind LJ. The role of sphingolipids in acute kidney injury. Adv Biol Regul. 2018;70:31–39. doi:10.1016/j.jbior.2018.11.003.
  • Lynch DV, Sphingolipids V. Sphingolipids. In: Thomas s Moore (ed.) Lipid Metabolism in Plants, Boca Raton, FL: Taylor & Francis Group; 2018:285–308. doi:10.1201/9781351074070.
  • Zitomer NC, Mitchell T, Voss KA, et al. Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem. 2009;284(8):4786–4795. doi:10.1074/jbc.M808798200.
  • Abnet CC, Borkowf CB, Qiao Y, et al. Sphingolipids as biomarkers of fumonisin exposure and risk of esophageal squamous cell carcinoma in China. Cancer Causes Control. 2001;12(9):821–828.
  • Gelineau-van Waes J, Rainey MA, Maddox JR, et al. Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720. Birth Defects Res A Clin Mol Teratol. 2012;94(10):790–803. doi:10.1002/bdra.23074.
  • Gardner NM, Riley RT, Showker JL, et al. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts. Toxicol Appl Pharmacol. 2016;298:56–65. doi:10.1016/j.taap.2016.02.018.
  • Delongchamp R, Young J. Tissue sphinganine as a biomarker of fumonisin-induced apoptosis. Food Addit Contam. 2001;18(3):255–261. doi:10.1080/02652030118953.
  • Enongene EN, Sharma RP, Bhandari N, et al. Persistence and reversibility of the elevation in free sphingoid bases induced by fumonisin inhibition of ceramide synthase. Toxicol Sci. 2002;67(2):173–181. doi:10.1093/toxsci/67.2.173.
  • Merrill AH, Jr, Morgan ET, Nikolova-Karakashian M, Stewart J. Sphingomyelin hydrolysis and regulation of the expression of the gene for cytochrome P450. Biochem Soc Trans. 1999;27(4):383–387. doi:10.1042/bst0270383.
  • van Meer G, Hoetzl S. Sphingolipid topology and the dynamic organization and function of membrane proteins. FEBS Lett. 2010;584(9):1800–1805. doi:10.1016/j.febslet.2009.10.020.
  • Kim SH, Singh MP, Sharma C, Kang SC. Fumonisin B1 actuates oxidative stress-associated colonic damage via apoptosis and autophagy activation in murine model. J Biochem Mol Toxicol. 2018;32(7):e22161–8. doi:10.1002/jbt.22161.
  • Liu X, Fan L, Yin S, Chen H, Hu H. Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon. 2019;167:1–5. doi:10.1016/j.toxicon.2019.06.009.
  • Tsalamandris S, Vogiatzi G, Antonopoulos ASS, Tousoulis D. The role of oxidative stress. In: Dimitris Tousoulis (ed.) Coronary Artery Disease: From Biology to Clinical Practice. London, UK: Elsevier Inc.; 2018:95–100. doi:10.1016/b978-0-12-811908-2.00006-4.
  • Betteridge DJ. What is oxidative stress? Metabolism. 2000;49(2 Suppl 1):3–8. doi:10.1016/S0026-0495(00)80077-3.
  • Poersch AB, Trombetta F, Braga ACM, et al. Involvement of oxidative stress in subacute toxicity induced by fumonisin B1 in broiler chicks. Vet Microbiol. 2014;174(1–2):180–185. doi:10.1016/j.vetmic.2014.08.020.
  • Wangia RN, Githanga DP, Xue KS, Tang L, Anzala OA, Wang JS. Validation of urinary sphingolipid metabolites as biomarker of effect for fumonisins exposure in Kenyan children. Biomarkers. 2019;24(4):379–388. doi:10.1080/1354750x.2019.1587510.
  • Stockmann-Juvala H, Mikkola J, Naarala J, Loikkanen J, Elovaara E, Savolainen K. Oxidative stress induced by fumonisin B1 in continuous human and rodent neural cell cultures. Free Radic Res. 2004;38(9):933–942. doi:10.1080/10715760412331273205.
  • Kouadio JH, Mobio TA, Baudrimont I, Moukha S, Dano SD, Creppy EE. Comparative study of cytotoxicity and oxidative stress induced by deoxynivalenol, zearalenone or fumonisin B1 in human intestinal cell line Caco-2. Toxicology. 2005;213(1–2):56–65. doi:10.1016/j.tox.2005.05.010.
  • Hassan AM, Mohamed SR, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA. Aquilegia vulgaris L. extract counteracts oxidative stress and cytotoxicity of fumonisin in rats. Toxicon. 2010;56(1):8–18. doi:10.1016/j.toxicon.2010.03.006.
  • Riedel S, Abel S, Burger HM, van der Westhuizen L, Swanevelder S, Gelderblom WCA. Differential modulation of the lipid metabolism as a model for cellular resistance to fumonisin B 1-induced cytotoxic effects in vitro. Prostaglandins Leukot Essent Fat Acids. 2016;109:39–51. doi:10.1016/j.plefa.2016.04.006.
  • Singh MP, Kang SC. Endoplasmic reticulum stress-mediated autophagy activation attenuates fumonisin B1 induced hepatotoxicity in vitro and in vivo. Food Chem Toxicol. 2017;110:371–382. doi:10.1016/j.fct.2017.10.054.
  • Yin S, Guo X, Li J, Fan L, Hu H. Fumonisin B1 induces autophagic cell death via activation of ERN1-MAPK8/9/10 pathway in monkey kidney MARC-145 cells. Arch Toxicol. 2016;90(4):985–996. doi:10.1007/s00204-015-1514-9.
  • Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human carcinogens-the IARC monographs classification. Mycotoxin Res. 2017;33(1):65–73. doi:10.1007/s12550-016-0265-7.
  • da Silva EO, Bracarense APFL, Oswald IP. Mycotoxins and oxidative stress: where are we? World Mycotoxin J. 2018;11(1):113–134. doi:10.3920/WMJ2017.2267.
  • National Research Council. Biological markers in environmental health research. Committee on Biological Markers of the National Research Council. Environ Health Perspect. 1987;74:3–9. doi:10.1289/ehp.74-1474499.
  • Jones C, Ciacci-Zanella JR, Zhang Y, Henderson G, Dickman M. Analysis of fumonisin B1-induced apoptosis. Environ Health Perspect. 2001;109(suppl 2):315–320. doi:10.1289/ehp.01109s2315.
  • Ryan PB, Burke TA, Cohen Hubal EA, Cura JJ, McKone TE. Using biomarkers to inform cumulative risk assessment. Environ Health Perspect. 2007;115(5):833–840. doi:10.1289/ehp.9334.
  • Gelderblom WC, Marasas WF. Controversies in fumonisin mycotoxicology and risk assessment. Hum Exp Toxicol. 2012;31(3):215–235. doi:10.1177/0960327110395338.
  • Shephard GS, Thiel PG, Sydenham EW, Alberts JF, Cawood ME. Distribution and excretion of a single dose of the mycotoxin fumonisin B1 in a non-human primate. Toxicon off J Int Soc Toxinol. 1994;32(6):735–741. doi:10.1016/0041-0101(94)90342-5.
  • Marasas WF, Jaskiewicz K, Venter FS, Van Schalkwyk DJ. Fusarium moniliforme contamination of maize in oesophageal cancer areas in Transkei. S Afr Med J. 1988;74(3):110–114.
  • Gelderblom WC, Marasas WF, Lebepe-Mazur S, Swanevelder S, Abel S. Cancer initiating properties of fumonisin B1 in a short-term rat liver carcinogenesis assay. Toxicology. 2008;250(2–3):89–95. doi:10.1016/j.tox.2008.06.004.
  • Chelule PK, Gqaleni N, Dutton MF, Chuturgoon AA. Exposure of rural and urban population in KwaZulu Natal, South Africa, to fumonisin B[sub1] in Maize. Environ Health Perspect. 2001;109(3):253–256. http://10.0.9.3/3434693. doi:10.2307/3434693.
  • Shephard GS, Van Der Westhuizen L, Sewram V. Biomarkers of exposure to fumonisin mycotoxins: a review. Food Addit Contam. 2007;24(10):1196–1201. doi:10.1080/02652030701513818.
  • Shetty PH, Bhat RV. Sensitive method for the detection of fumonisin B1 in human urine. J Chromatogr B Biomed Sci Appl. 1998;705(1):171–173. doi:10.1016/S0378-4347(97)00428-3.
  • Gong YY, Torres-Sanchez L, Lopez-Carrillo L, et al. Association between tortilla consumption and human urinary fumonisin B1 levels in a Mexican population. Cancer Epidemiol Biomarkers Prev. 2008;17(3):688–694. doi:10.1158/1055-9965.epi-07-2534.
  • Robinson A, Johnson NM, Strey A, et al. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(5):809–818. doi:10.1080/19440049.2011.651628.
  • Riley RT, Wang E, Merrill AH, Jr. Liquid chromatographic determination of sphinganine and sphingosine: use of the free sphinganine-to-sphingosine ratio as a biomarker for consumption of fumonisins. AOAC Int. 1994;77(2):533–540. doi:10.1093/jaoac/77.2.533.
  • Ramljak D, Calvert RJ, Wiesenfeld PW, et al. A potential mechanism for fumonisin B1-mediated hepatocarcinogenesis: cyclin D1 stabilization associated with activation of Akt and inhibition of GSK-3β activity. Carcinogenesis. 2000;21(8):1537–1546. doi:10.1093/carcin/21.5.537.
  • Solfrizzo M, Avantaggiato G, Visconti A. Rapid method to determine sphinganine/sphingosine in human and animal urine as a biomarker for fumonisin exposure. J Chromatogr B Biomed Sci Appl. 1997;692(1):87–93. doi:10.1016/s0378-4347(96)00502-6.
  • Merrill AH, Jr, Schmelz EM, Wang E, et al. Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets. J Nutr. 1997;127(5 Suppl):830S–833S. doi:10.1093/jn/127.5.830S.
  • Wilkins PA, Vaala WE, Zivotofsky D, Twitchell ED. A herd outbreak of equine leukoencephalomalacia. Cornell Vet. 1994;84(1):53–59.
  • Vendruscolo CP, Frias NC, de Carvalho CB, de Sá LRM, Belli CB, Baccarin RYA. Leukoencephalomalacia outbreak in horses due to consumption of contaminated hay. J Vet Intern Med. 2016;30(6):1879–1881. doi:10.1111/jvim.14588.
  • Marasas WF, Kellerman TS, Gelderblom WC, Coetzer JA, Thiel PG, van der Lugt JJ. Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. Onderstepoort J Vet Res. 1988;55(4):197–203.
  • Smith GWW, Constable PDD, Tumbleson MEE, Rottinghaus GEE, Haschek WMM. Sequence of cardiovascular changes leading to pulmonary edema in swine fed culture material containing fumonisin. Am J Vet Res. 1999;60(10):1292–1300.
  • Howard PC, Eppley RM, Stack ME, et al. Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ Health Perspect. 2001;109:277–282. doi:10.2307/3435019.
  • Lemmer ER, Vessey CJ, Gelderblom WC, et al. Fumonisin B1-induced hepatocellular and cholangiocellular tumors in male Fischer 344 rats: potentiating effects of 2-acetylaminofluorene on oval cell proliferation and neoplastic development in a discontinued feeding study. Carcinogenesis. 2004;25(7):1257–1264. doi:10.1093/carcin/bgh129.
  • Riedel S, Abel S, Swanevelder S, Gelderblom WCA. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver. Food Chem Toxicol. 2015;78:96–104. doi:10.1016/j.fct.2015.01.023.
  • Detrait ER, George TM, Etchevers HC, Gilbert JR, Vekemans M, Speer MC. Human neural tube defects: Developmental biology, epidemiology, and genetics. Neurotoxicol Teratol. 2005;27(3):515–524. doi:10.1016/j.ntt.2004.12.007.
  • Bertero A, Moretti A, Spicer LJ, Caloni F. Fusarium molds and mycotoxins: potential species-specific effects. Toxins (Basel). 2018;10(6):244– 227. doi:10.3390/toxins10060244.
  • Upadhaya SD, Park MA, Ha JK. Mycotoxins and their biotransformation in the rumen: a review. Asian Australas J Anim Sci. 2010;23(9):1250–1260. doi:10.5713/ajas.2010.r.06.
  • Missmer SA, Suarez L, Felkner M, et al. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Heal Perspect. 2006;114(2):237–241. doi:10.1289/ehp.8221.
  • Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT. Chapter 5 Maternal Fumonisin Exposure as a Risk Factor for Neural Tube Defects. Vol 56. 1st ed. Elsevier Inc.; 2009. doi:10.1016/S1043-4526(08)00605-0.
  • van Gool JD, Hirche H, Lax H, De Schaepdrijver L. Folic acid and primary prevention of neural tube defects: A review. Reprod Toxicol. 2018;80(May):73–84. doi:10.1016/j.reprotox.2018.05.004.
  • Waes J.-v, Voss KA, Stevens VL, Speer MC, Riley RT. Maternal fumonisin exposure as a risk factor for neural tube defects. Adv Food Nutr Res. 2009;56:145.
  • Al-Dissi A. Toxicology for the equine practitioner. Vet Clin North Am Equine Pract. 2015;31(2):269–279. doi:10.1016/j.cveq.2015.04.009.
  • Lumsangkul C, Chiang H-I, Lo N-W, Fan Y-K, Ju J-C. Developmental toxicity of mycotoxin fumonisin B1 in animal embryogenesis: an overview. Toxins (Basel). 2019;11(2):114. doi:10.3390/toxins11020114.
  • Rai M, Jogee PS, Ingle AP. Emerging nanotechnology for detection of mycotoxins in food and feed. Int J Food Sci Nutr. 2015;66(4):363–370. doi:10.3109/09637486.2015.1034251.
  • Smith GW. Fumonisins. London, UK: Elsevier Inc.; 2018. doi:10.1016/B978-0-12-811410-0.00071-4.
  • Meyer P. Epigenetics – A Historical Perspective. Vol. 88. Elsevier Ltd; 2018. doi:10.1016/bs.abr.2018.08.003.
  • Huang D, Cui LQ, Sajid A, et al. The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food Chem Toxicol. 2019;123:595–601. doi:10.1016/j.fct.2018.10.059.
  • Sancak D, Ozden S. Global histone modifications in Fumonisin B1 exposure in rat kidney epithelial cells. Toxicol In Vitro. 2015;29(7):1809–1815. doi:10.1016/j.tiv.2015.07.019.
  • Bayoglu SO, Karaman EF, Senyildiz M, Ozden S. Effects of fumonisin B1 on global DNA methylation in HK-2 Cells. Toxicol Lett. 2017;280:S200. doi:10.1016/j.toxlet.2017.07.868.
  • Demirel G, Alpertunga B, Ozden S. Role of fumonisin B1 on DNA methylation changes in rat kidney and liver cells. Pharm Biol. 2015;53(9):1302–1310. doi:10.3109/13880209.2014.976714.
  • Chuturgoon A, Phulukdaree A, Moodley D. Fumonisin B1 induces global DNA hypomethylation in HepG2 cells - an alternative mechanism of action. Toxicology. 2014;315(1):65–69. doi:10.1016/j.tox.2013.11.004.
  • Theumer MG, Cánepa MC, López AG, Mary VS, Dambolena JS, Rubinstein HR. Subchronic mycotoxicoses in Wistar rats: assessment of the in vivo and in vitro genotoxicity induced by fumonisins and aflatoxin B(1), and oxidative stress biomarkers status. Toxicology. 2010;268(1–2):104–110. doi:10.1016/j.tox.2009.12.007.
  • Sharma N, He Q, Sharma RP. Amelioration of fumonisin B1 hepatotoxicity in mice by depletion of T cells with anti-Thy-1.2. Toxicology. 2006;223(3):191–201. doi:10.1016/j.tox.2006.03.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.