590
Views
2
CrossRef citations to date
0
Altmetric
Articles

Characterization of cytochrome P450s (CYP)-overexpressing HepG2 cells for assessing drug and chemical-induced liver toxicity

ORCID Icon, , , ORCID Icon, ORCID Icon, , , , & show all

References

  • Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol. 2001;14(6):611–650. doi:10.1021/tx0002583.
  • Ellison CA, Tian Y, Knaak JB, Kostyniak PJ, Olson JR. Human hepatic cytochrome P450-specific metabolism of the organophosphorus pesticides methyl parathion and diazinon. Drug Metab Dispos. 2012;40(1):1–5. doi:10.1124/dmd.111.042572.
  • Zhuang XM, Wei X, Tan Y, et al. Contribution of carboxylesterase and cytochrome P450 to the bioactivation and detoxification of isocarbophos and its enantiomers in human liver microsomes. Toxicol Sci. 2014;140(1):40–48. doi:10.1093/toxsci/kfu067.
  • D'Agostino J, Zhang H, Kenaan C, Hollenberg PF. Mechanism-based inactivation of human cytochrome P450 2B6 by chlorpyrifos. Chem Res Toxicol. 2015;28(7):1484–1495. 10.1021/acs.chemrestox.5b00156. doi:10.1021/acs.chemrestox.5b00156.
  • Rendic S, Guengerich FP. Contributions of human enzymes in carcinogen metabolism. Chem Res Toxicol. 2012;25(7):1316–1383. doi:10.1021/tx300132k.
  • Benskin JP, Holt A, Martin JW. Isomer-specific biotransformation rates of a perfluorooctane sulfonate (PFOS)-precursor by cytochrome P450 isozymes and human liver microsomes. Environ Sci Technol. 2009;43(22):8566–8572. doi:10.1021/es901915f.
  • Uwimana E, Li X, Lehmler HJ. Human liver microsomes atropselectively metabolize 2,2',3,4',6-Pentachlorobiphenyl (PCB 91) to a 1,2-shift product as the major metabolite. Environ Sci Technol. 2018;52(10):6000–6008. 10.1021/acs.est.8b00612. doi:10.1021/acs.est.8b00612.
  • Nagayoshi H, Kakimoto K, Konishi Y, Kajimura K, Nakano T. Determination of the human cytochrome P450 monooxygenase catalyzing the enantioselective oxidation of 2,2',3,5',6-pentachlorobiphenyl (PCB 95) and 2,2',3,4,4',5',6-heptachlorobiphenyl (PCB 183). Environ Sci Pollut Res Int. 2018;25(17):16420–16426. doi:10.1007/s11356-017-0434-z.
  • Uwimana E, Cagle B, Yeung C, et al. Atropselective oxidation of 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) to hydroxylated metabolites by human liver microsomes and its implications for PCB 132 neurotoxicity. Toxicol Sci. 2019;171(2):406–420. doi:10.1093/toxsci/kfz150.
  • Kamdem LK, Meineke I, Godtel-Armbrust U, Brockmoller J, Wojnowski L. Dominant contribution of P450 3A4 to the hepatic carcinogenic activation of aflatoxin B1. Chem Res Toxicol. 2006;19(4):577–586. doi:10.1021/tx050358e.
  • Tolosa L, Donato MT, Perez-Cataldo G, Castell JV, Gomez-Lechon MJ. Upgrading cytochrome P450 activity in HepG2 cells co-transfected with adenoviral vectors for drug hepatotoxicity assessment. Toxicol in Vitro. 2012;26(8):1272–1277. doi:10.1016/j.tiv.2011.11.008.
  • Hashizume T, Yoshitomi S, Asahi S, Matsumura S, Chatani F, Oda H. In vitro micronucleus test in HepG2 transformants expressing a series of human cytochrome P450 isoforms with chemicals requiring metabolic activation. Mutat Res. 2009;677(1-2):1–7. doi:10.1016/j.mrgentox.2009.03.009.
  • Yang M, Ruan J, Fu PP, Lin G. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity. Chem Biol Interact. 2016;243:119–126. doi:10.1016/j.cbi.2015.09.011.
  • Bjornsson ES. Hepatotoxicity by drugs: The most common implicated agents. Int J Mol Sci. 2016;17:224. doi:10.3390/ijms17020224.
  • Liu Z, He X, Wang L, Zhang Y, Hai Y, Gao R. Chinese herbal medicine hepatotoxicity: the evaluation and recognization based on large-scale evidence database. Curr Drug Metab. 2019;20(2):138–146. doi:10.2174/1389200219666180813144114.
  • Thakkar S, Li T, Liu Z, Wu L, Roberts R, Tong W. Drug-induced liver injury severity and toxicity (DILIst): binary classification of 1279 drugs by human hepatotoxicity. Drug Discov Today. 2020;25(1):201–208. doi:10.1016/j.drudis.2019.09.022.
  • Kaplowitz N. Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov. 2005;4(6):489–499. doi:10.1038/nrd1750.
  • Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–485. doi:10.1056/NEJMra021844.
  • Baillie TA, Rettie AE. Role of biotransformation in drug-induced toxicity: influence of intra- and inter-species differences in drug metabolism. Drug Metab Pharmacokinet. 2011;26(1):15–29. doi:10.2133/dmpk.dmpk-10-rv-089.
  • Gomez-Lechon MJ, Donato MT, Castell JV, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab. 2003;4(4):292–312. doi:10.2174/1389200033489424.
  • Hewitt NJ, Lechon MJ, Houston JB, et al. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39(1):159–234. doi:10.1080/03602530601093489.
  • den Braver-Sewradj SP, den Braver MW, Vermeulen NP, Commandeur JN, Richert L, Vos JC. Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol in Vitro. 2016;33:71–79. doi:10.1016/j.tiv.2016.02.013.
  • Guo L, Dial S, Shi L, et al. Similarities and differences in the expression of drug-metabolizing enzymes between human hepatic cell lines and primary human hepatocytes. Drug Metab Dispos. 2011;39(3):528–538. doi:10.1124/dmd.110.035873.
  • Ren Z, Chen S, Ning B, Guo L. Use of liver-derived cell lines for the study of drug-induced liver injury. In: Chen M, Will Y, eds. Book Chapter in Drug-Induced Liver Toxicity. New York, NY: Human Press; 2018:151–177.
  • Bova MP, Tam D, McMahon G, Mattson MN. Troglitazone induces a rapid drop of mitochondrial membrane potential in liver HepG2 cells. Toxicol Lett. 2005;155(1):41–50. doi:10.1016/j.toxlet.2004.08.009.
  • Chen S, Dobrovolsky VN, Liu F, et al. The role of autophagy in usnic Acid-induced toxicity in hepatic cells. Toxicol Sci. 2014;142(1):33–44. doi:10.1093/toxsci/kfu154.
  • Chen S, Wan L, Couch L, et al. Mechanism study of goldenseal-associated DNA damage. Toxicol Lett. 2013;221(1):64–72. doi:10.1016/j.toxlet.2013.05.641.
  • Chen S, Xuan J, Couch L, et al. Sertraline induces endoplasmic reticulum stress in hepatic cells. Toxicology. 2014;322:78–88. doi:10.1016/j.tox.2014.05.007.
  • Chen S, Xuan J, Wan L, et al. Sertraline, an antidepressant, induces apoptosis in hepatic cells through the mitogen-activated protein kinase pathway. Toxicol Sci. 2014;137(2):404–415. doi:10.1093/toxsci/kft254.
  • Dykens JA, Jamieson J, Marroquin L, Nadanaciva S, Billis PA, Will Y. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol Appl Pharmacol. 2008;233(2):203–210. doi:10.1016/j.taap.2008.08.013.
  • Felser A, Blum K, Lindinger PW, Bouitbir J, Krahenbuhl S. Mechanisms of hepatocellular toxicity associated with dronedarone-a comparison to amiodarone. Toxicol Sci. 2013;131(2):480–490. doi:10.1093/toxsci/kfs298.
  • Greer ML, Barber J, Eakins J, Kenna JG. Cell based approaches for evaluation of drug-induced liver injury. Toxicology. 2010;268(3):125–131. doi:10.1016/j.tox.2009.08.007.
  • Guo L, Zhang L, Sun Y, et al. Differences in hepatotoxicity and gene expression profiles by anti-diabetic PPAR gamma agonists on rat primary hepatocytes and human HepG2 cells. Mol Divers. 2006;10(3):349–360. doi:10.1007/s11030-006-9038-0.
  • Juan-Garcia A, Manyes L, Ruiz MJ, Font G. Involvement of enniatins-induced cytotoxicity in human HepG2 cells. Toxicol Lett. 2013;218(2):166–173. doi:10.1016/j.toxlet.2013.01.014.
  • Nguyen KC, Willmore WG, Tayabali AF. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology. 2013;306:114–123. doi:10.1016/j.tox.2013.02.010.
  • O’Brien PJ, Irwin W, Diaz D, et al. High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening. Arch Toxicol. 2006;80(9):580–604. doi:10.1007/s00204-006-0091-3.
  • Maiuri AR, Breier AB, Turkus JD, Ganey PE, Roth RA. Calcium contributes to the cytotoxic interaction between diclofenac and cytokines. Toxicol Sci. 2016;149(2):372–384. doi:10.1093/toxsci/kfv249.
  • Brandon EF, Raap CD, Meijerman I, Beijnen JH, Schellens JH. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–246. doi:10.1016/S0041-008X(03)00128-5.
  • Westerink WM, Schoonen WG. Cytochrome P450 enzyme levels in HepG2 cells and cryopreserved primary human hepatocytes and their induction in HepG2 cells. Toxicol in Vitro. 2007;21(8):1581–1591. doi:10.1016/j.tiv.2007.05.014.
  • Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos. 2003;31(8):1035–1042. doi:10.1124/dmd.31.8.1035.
  • Gomez-Lechon MJ, Tolosa L, Donato MT. Upgrading HepG2 cells with adenoviral vectors that encode drug-metabolizing enzymes: application for drug hepatotoxicity testing. Expert Opin Drug Metab Toxicol. 2017;13(2):137–148. doi:10.1080/17425255.2017.1238459.
  • Xuan J, Chen S, Ning B, Tolleson WH, Guo L. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Chem Biol Interact. 2016;255:63–73. doi:10.1016/j.cbi.2015.10.009.
  • Chen S, Wu Q, Ning B, Bryant M, Guo L. The role of hepatic cytochrome P450s in the cytotoxicity of dronedarone. Arch Toxicol. 2018;92(6):1969–1981. 10.1007/s00204-018-2196-x. doi:10.1007/s00204-018-2196-x.
  • Wu Q, Ning B, Xuan J, Ren Z, Guo L, Bryant MS. The role of CYP 3A4 and 1A1 in amiodarone-induced hepatocellular toxicity. Toxicol Lett. 2016;253:55–62. 10.1016/j.toxlet.2016.04.016. doi:10.1016/j.toxlet.2016.04.016.
  • Chen S, Wu Q, Li X, et al. The role of hepatic cytochrome P450s in the cytotoxicity of sertraline. Arch Toxicol. 2020;94(7):2401–2411. 10.1007/s00204-020-02753-y. doi:10.1007/s00204-020-02753-y.
  • Chen S, Ren Z, Yu D, Ning B, Guo L. DNA damage-induced apoptosis and mitogen-activated protein kinase pathway contribute to the toxicity of dronedarone in hepatic cells. Environ Mol Mutagen. 2018;59(4):278–289. 10.1002/em.22173. doi:10.1002/em.22173.
  • McCall MN, McMurray HR, Land H, Almudevar A. On non-detects in qPCR data. Bioinformatics. 2014;30(16):2310–2316. 10.1093/bioinformatics/btu239. doi:10.1093/bioinformatics/btu239.
  • Guo L, Li Q, Xia Q, Dial S, Chan PC, Fu P. Analysis of gene expression changes of drug metabolizing enzymes in the livers of F344 rats following oral treatment with kava extract. Food Chem Toxicol. 2009;47(2):433–442. doi:10.1016/j.fct.2008.11.037.
  • Esquenet M, Swinnen JV, Heyns W, Verhoeven G. LNCaP prostatic adenocarcinoma cells derived from low and high passage numbers display divergent responses not only to androgens but also to retinoids. J Steroid Biochem Mol Biol. 1997;62(5–6):391–399. 10.1016/s0960-0760(97)00054-x. doi:10.1016/S0960-0760(97)00054-X.
  • Chang-Liu CM, Woloschak GE. Effect of passage number on cellular response to DNA-damaging agents: cell survival and gene expression. Cancer Lett. 1997;113(1–2):77–86. 10.1016/s0304-3835(97)04599-0. doi:10.1016/S0304-3835(97)04599-0.
  • Yu H, Cook TJ, Sinko PJ. Evidence for diminished functional expression of intestinal transporters in Caco-2 cell monolayers at high passages. Pharm Res. 1997;14(6):757–762. 10.1023/a:1012150405949.
  • Wenger SL, Senft JR, Sargent LM, Bamezai R, Bairwa N, Grant SG. Comparison of established cell lines at different passages by karyotype and comparative genomic hybridization. Biosci Rep. 2004;24(6):631–639. 10.1007/s10540-005-2797-5. doi:10.1007/s10540-005-2797-5.
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26. 10.1007/s10565-005-0085-6. doi:10.1007/s10565-005-0085-6.
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. 10.1016/j.pharmthera.2012.12.007. doi:10.1016/j.pharmthera.2012.12.007.
  • Donato MT, Jover R, Gomez-Lechon MJ. Hepatic cell lines for drug hepatotoxicity testing: limitations and strategies to upgrade their metabolic competence by gene engineering. Curr Drug Metab. 2013;14(9):946–968. 10.2174/1389200211314090002. doi:10.2174/1389200211314090002.
  • Tolosa L, Jiménez N, Pérez G, Castell JV, Gómez-Lechón MJ, Donato MT. Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol. 2018;92(1):383–399. doi:10.1007/s00204-017-2036-4.
  • Hashizume T, Yoshitomi S, Asahi S, et al. Advantages of human hepatocyte-derived transformants expressing a series of human cytochrome p450 isoforms for genotoxicity examination. Toxicol Sci. 2010;116(2):488–497. doi:10.1093/toxsci/kfq154.
  • Vagiannis D, Novotna E, Skarka A, et al. Ensartinib (X-396) effectively modulates pharmacokinetic resistance mediated by ABCB1 and ABCG2 drug efflux transporters and CYP3A4 biotransformation enzyme. Cancers (Basel). 2020;12(4):813. doi:10.3390/cancers12040813.
  • Hofman J, Sorf A, Vagiannis D, et al. Brivanib exhibits potential for pharmacokinetic drug-drug interactions and the modulation of multidrug resistance through the inhibition of human ABCG2 drug efflux transporter and CYP450 biotransformation enzymes. Mol Pharm. 2019;16(11):4436–4450. doi:10.1021/acs.molpharmaceut.9b00361.
  • Yoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol in Vitro. 2001;15(3):245–256. doi:10.1016/S0887-2333(01)00011-X.
  • Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact. 2007;168(1):66–73. doi:10.1016/j.cbi.2006.12.003.
  • Kanebratt KP, Andersson TB. Evaluation of HepaRG cells as an in vitro model for human drug metabolism studies. Drug Metab Dispos. 2008;36(7):1444–1452. doi:10.1124/dmd.107.020016.
  • Gonzalez FJ. The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos. 2007;35(1):1–8. doi:10.1124/dmd.106.012492.
  • Caro AA, Cederbaum AI. Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu Rev Pharmacol Toxicol. 2004;44:27–42. doi:10.1146/annurev.pharmtox.44.101802.121704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.