153
Views
0
CrossRef citations to date
0
Altmetric
Articles

Evaluation of antimicrobial and antioxidant activity of zinc oxide nanoparticles biosynthesized with Ziziphus spina-christi leaf extracts

, , , , , & show all

References

  • Shnawa BH, Sj A-A, Swar SOJVP, Health P. Nanoparticles as a new approach for treating hydatid cyst disease. Veterinary Pathobiol Public Health. 2021:180–189. doi:10.47278/book.vpph/2021.015.
  • Ahmed MH, Hassan A, Molnár J. The role of micronutrients to support immunity for COVID-19 prevention. Rev Bras Farmacogn. 2021;31(4):361–374. doi:10.1016/j.phanu.2022.100288.
  • Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018;2018:1062562–1062518. doi:10.1155/2018/1062562.
  • Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063–1077. doi:10.1517/17425247.2010.502560.
  • Ahmed MH, Vasas D, Hassan A, Molnár J. The impact of functional food in prevention of malnutrition. PharmaNutrition. 2022;19:100288. doi:10.1016/j.phanu.2022.100288.
  • Shnawa BH, Hamad SM, Barzinjy AA, Kareem PA, Ahmed MH. Scolicidal activity of biosynthesized zinc oxide nanoparticles by Mentha longifolia L. leaves against Echinococcus granulosus protoscolices. Emergent Mater. 2021;5(3):683–693. doi:10.1007/s42247-021-00264-9.
  • Shnawa BH. Advances in the use of nanoparticles as anti-cystic echinococcosis agents: A review article. JPRI. 2018;24(1):1–14. doi:10.9734/JPRI/2018/44642.
  • Ramesh M, Anbuvannan M, Viruthagiri G. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136 Pt B:864–870. doi:10.1016/j.saa.2014.09.105.
  • Alnehia A, Al-Odayni A-B, Al-Sharabi A, Al-Hammadi A, Saeed W. Pomegranate peel extract-mediated green synthesis of ZnO-NPs: Extract concentration-dependent structure, optical, and antibacterial activity. J Chem. 2022;2022:1–11. doi:10.1155/2022/9647793.
  • Abdulrahman MD, Zakariya AM, Hama HA, et al. Ethnopharmacology, biological evaluation, and chemical composition of Ziziphus spina-christi (L.) Desf.: A Review. Adv Pharmacol Pharm Sci. 2022;2022:4495688–4495636. doi:10.1155/2022/4495688.
  • Ghazanfar SA. Handbook of Arabian Medicinal Plants(1st ed.). CRC press; 1994. doi:10.1201/b14834.
  • El-Shahir AA, El-Wakil DA, Abdel Latef AAH, Youssef NH. Bioactive compounds and antifungal activity of leaves and fruits methanolic extracts of Ziziphus spina-christi L. Plants (Basel). 2022;11(6):746. doi:10.3390/plants11060746.
  • Shnawa BH, Jalil PJ, Aspoukeh P, Mohammed DA, Biro DM. Protoscolicidal and biocompatibility properties of biologically fabricated zinc oxide nanoparticles using Ziziphus spina-christi Leaves. Pak Vet J. 2022;42(4):517–525. doi:10.29261/­pakvetj/2022.058.
  • Arciniegas-Grijalba P, Patiño-Portela M, Mosquera-Sánchez L, Guerrero-Vargas J, Rodríguez-Páez JJAN. ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor. Appl Nanosci. 2017;7(5):225–241. doi:10.1007/s13204-017-0561-3.
  • Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med. 2020;11(1):37–44. doi:10.1016/j.jaim.2017.11.003.
  • Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. 2020;10(1):9055. doi:10.1038/s41598-020-65949-3.
  • Yahia Y, Benabderrahim MA, Tlili N, Bagues M, Nagaz K. Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS One. 2020;15(5):e0232599. doi:10.1371/journal.pone.0232599.
  • Al-Rifai A, Aqel A, Al-Warhi T, Wabaidur SM, Al-Othman ZA, Badjah-Hadj-Ahmed AY. Antibacterial, antioxidant activity of ethanolic plant extracts of some Convolvulus species and their DART-ToF-MS profiling. Evidence-Based Complementary and Alternativ Med. 2017;2017:1–9. doi:10.1155/2017/5694305.
  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007;90(213902):2139021–2139023. doi:10.1063/1.2742324.
  • Ali K, Dwivedi S, Azam A, et al. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci. 2016;472:145–156. doi:10.1016/j.jcis.2016.03.021.
  • Pandimurugan R, Thambidurai S. Novel seaweed capped ZnO nanoparticles for effective dye photodegradation and antibacterial activity. Adv Powder Technol. 2016;27(4):1062–1072. doi:10.1016/j.apt.2016.03.014.
  • Shinde SS. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed. 2015;3:1033. doi:10.47739/2334-1815/1033.
  • Shaban AS, Owda ME, Basuoni MM, et al. Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: structure and evaluation of their biological applications. Biomass Conv Bioref. 2022:1–17. doi:10.1007/s13399-022-03185-7.
  • Sinha R, Karan R, Sinha A, Khare S. Interaction and nanotoxic effect of ZnO and Ag nanoparticles against ESBL and Amp-C producing gram negative isolates from superficial wound infections. Int J Curr Microbiol Appl Sci. 2015;1:38–47. doi:10.1016/j.biortech.2010.07.117.
  • Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2019;14:87–100. doi:10.2147/ijn.s186888.
  • Lundstedt E, Kahne D, Ruiz N. Assembly and maintenance of lipids at the bacterial outer membrane. Chem Rev. 2020;121(9):5098–5123. doi:10.1021/acs.chemrev.0c00587.
  • Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Nat Sci: Mater Int. 2012;22(6):693–700. doi:10.1016/j.pnsc.2012.11.015.
  • Mendes CR, Dilarri G, Forsan CF, et al. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep. 2022;12(1):2658. doi:10.1038/s41598-022-06657-y.
  • Abbaszadegan A, Ghahramani Y, Gholami A, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater. 2015;2015(1):1–8. doi:10.1155/2015/720654.
  • Saad A, Cabet E, Lilienbaum A, Hamadi S, Abderrabba M, Chehimi MM. Polypyrrole/Ag/mesoporous silica nanocomposite particles: Design by photopolymerization in aqueous medium and antibacterial activity. J Taiwan Inst Chem Eng. 2017;80:1022–1030. doi:10.1590/0104-1428.08020.
  • Ahmad N, Sultana S, Faisal SM, Ahmed A, Sabir S, Khan MZ. Zinc oxide-decorated polypyrrole/chitosan bionanocomposites with enhanced photocatalytic, antibacterial and anticancer performance. RSC Adv. 2019;9(70):41135–41150. doi:10.1039/C9RA06493A.
  • Dolan HL, Bastarrachea LJ, Tikekar RV. Inactivation of Listeria innocua by a combined treatment of low-frequency ultrasound and zinc oxide. LWT. 2018;88:146–151. doi:10.1016/j.lwt.2017.10.008.
  • Erazo A, Mosquera SA, Rodríguez-Paéz J. Synthesis of ZnO nanoparticles with different morphology: study of their antifungal effect on strains of Aspergillus niger and Botrytis cinerea. Mater Chem Phys. 2019;234:172–184. doi:10.1016/j.matchemphys.2019.05.075.
  • Fang J-Y, Tang K-W, Yang S-H, et al. Synthetic naphthofuranquinone derivatives are effective in eliminating drug-resistant Candida albicans in hyphal, biofilm, and intracellular forms: an application for skin-infection treatment. Front Microbiol. 2020;11:2053. doi:10.3389/fmicb.2020.02053.
  • Sandhya M, V A, Maneesha K S, Raja B, R J, S S. Amphotericin B loaded sulfonated chitosan nanoparticles for targeting macrophages to treat intracellular Candida glabrata infections. Int J Biol Macromol. 2018;110:133–139. doi:10.1016/j.ijbiomac.2018.01.028.
  • Sriramulu M, Sumathi S. Photocatalytic, antioxidant, antibacterial and anti-inflammatory activity of silver nanoparticles synthesised using forest and edible mushroom. Adv Nat Sci: Nanosci Nanotechnol. 2017;8(4):045012. doi:10.1088/2043-6254/aa92b5.
  • Ezzi A, Salahy M, Shnawa B, Abed G, Mandour A. Changes in levels of antioxidant markers and status of some enzyme activities among falciparum malaria patients in Yemen. J Microbiol Exp,. 2017;4(6):00131. doi:10.15406/jmen.2017.04.00131.
  • Jayaprakasha GK, Jaganmohan Rao L, Sakariah KK. Antioxidant activities of flavidin in different in vitro model systems. Bioorganic & Med Chem. 2004;12(19):5141–5146. doi:10.1016/j.bmc.2004.07.028.
  • Liu Q, Wu F, Chen Y, Alrashood ST, Alharbi SA. Anti-human colon cancer properties of a novel chemotherapeutic supplement formulated by gold nanoparticles containing Allium sativum L. leaf aqueous extract and investigation of its cytotoxicity and antioxidant activities. Arabian J Chem. 2021;14(4):103039. doi:10.1016/j.arabjc.2021.103039.
  • Housein Z, Kareem TS, Salihi A. In vitro anticancer activity of hydrogen sulfide and nitric oxide alongside nickel nanoparticle and novel mutations in their genes in CRC patients. Surfaces. 2021;11(1):2536. doi:10.1038/s41598-021-82244-.
  • Lashin I, Hasanin M, Hassan SAM, Hashem AH. Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: Characterization, antimicrobial, and antioxidant activity. Biomass Conv Bioref. 2023;13(11):10133–10146. doi:10.1007/s13399-021-01873-4.
  • Safawo T, Sandeep BV, Pola S, Tadesse A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano. 2018;3:56–63. doi:10.1016/j.onano.2018.08.001.
  • Baliyan S, Mukherjee R, Priyadarshini A, et al. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326. doi:10.3390/molecules27041326.
  • Patel Rajesh M, Patel Natvar J. In vitro antioxidant activity of coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. J Adv Pharmacy Educ & Res. 2011;1(1):52–68. https://www.researchgate.net/publication/310748231
  • Stan M, Popa A, Toloman D, Silipas T-D, Vodnar DC. Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metall Sin (Engl Lett). 2016;29(3):228–236. doi:10.1088/2043-6254/aa92b5.
  • Shnawa BH, Gorony S, Khalid KM. Efficacy of cyperus rotundus rhizomes-tubers extracts against protoscoleces of Echinococcus granulosus. World J Pharm Res. 2017;6:157–179.
  • Hamad SM, Shnawa BH, Jalil PJ, Ahmed MH. Assessment of the therapeutic efficacy of silver nanoparticles against secondary cystic echinococcosis in BALB/c mice. Surface. 2022;5(1):91–112. doi:10.3390/surfaces5010004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.