255
Views
1
CrossRef citations to date
0
Altmetric
Articles

Assessing the impact and mechanisms of environmental pollutants (heavy metals and pesticides) on the male reproductive system: a comprehensive review

, , &

References

  • Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37. doi:10.1186/s12958-015-0032-1.
  • Aitken RJ, Baker MA. Oxidative stress, sperm survival and fertility control. Mol Cell Endocrinol. 2006;250(1-2):66–69. doi:10.1016/j.mce.2005.12.026.
  • Pflieger-Bruss S, Schuppe HC, Schill WB. The male reproductive system and its susceptibility to endocrine disrupting chemicals. Andrologia. 2004;36(6):337–345. doi:10.1111/j.1439-0272.2004.00641.x.
  • Han X, Huang Q. Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology. 2021;456:152780. doi:10.1016/j.tox.2021.152780.
  • Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia. 2021;53(1):e13646. doi:10.1111/and.13646.
  • Salabas E, Karabulut S, Yazar S, Irez T. Effects of Environmental Pollutants on the Male Reproductive System. Res Trends Challenges Med Sci. 8;2021:7–38. doi:10.9734/bpi/rtcms/v8/2412e.
  • de Oliveira CPA, Carneiro AA, Ervilha LOG, Machado-Neves M, Souza ACF, Carvalho RPR. Does environmental pollution affect male reproductive system in naturally exposed vertebrates? A systematic review. Theriogenology. 2023;198:305–316. doi:10.1016/j.theriogenology.2023.01.004.
  • Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere. 2021;274:129976. doi:10.1016/j.chemosphere.2021.129976.
  • Abhilash PC, Singh N. Pesticide use and application: An Indian scenario. J Hazard Mater. 2009;165(1-3):1–12. doi:10.1016/j.jhazmat.2008.10.061.
  • Yadav IC, Devi NL, Syed JH, et al. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Sci Total Environ. 2015;511:123–137. doi:10.1016/j.scitotenv.2014.12.041.
  • Martenies SE, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: A systematic review. Toxicology. 2013;307:66–73. doi:10.1016/j.tox.2013.02.005.
  • Alavanja MCR, Hoppin JA, Kamel F. Health effects of chronic pesticide exposure: Cancer and neurotoxicity. Annu Rev Public Health. 2004;25(1):155–197. doi:10.1146/annurev.publhealth.25.101802.123020.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ.Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicicology Volume 3: Environmental toxicology. 2012;101:133–164. doi:10.1007/978-3-7643-8340-4.
  • Chowdhury A. Recent advances in heavy metals induced effect on male reproductive function—A retrospective. Al Ameen J Med Sci. 2009;2:37–42.
  • Atere TG, Akinloye OA. High dose of standardised extract of Costus afer leaves potentiates cadmium reproductive toxicity in Wistar rats. Andrologia. 2019;51(9):e13360. doi:10.1111/and.13360.
  • Gabrielsen J, Lipshultz L, Lamb D. Mp43-02 serum cadmium levels predict erectile dysfunction in men. J Urol. 2018;199(4S):2018. doi:10.1016/j.juro.2018.02.1401.
  • Zhao L, Lin, Ru Y, Fei Liu M, et al. Reproductive effects of cadmium on sperm function and early embryonic development in vitro. PLoS One. 2017;12(11):e0186727. doi:10.1371/journal.pone.0186727.
  • Wang HF, Chang M, Peng TT, et al. Exposure to cadmium impairs sperm functions by Reducing CatSper in mice. Cell Physiol Biochem. 2017;42(1):44–54. doi:10.1159/000477113.
  • Akunna GG, Obikili EN, Anyawu GE, Esom EA. Evidences for spermatozoa toxicity and oxidative damage of cadmium exposure in rats. J Pharmacol Toxicol. 2017;12(1):50–56. doi:10.3923/jpt.2017.50.56.
  • Ali W, Bian Y, Ali H, et al. Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: a novel pathway. Aging (Albany NY). 2023;15(10):4096–4107. doi:10.18632/aging.204675.
  • Gomaa AMS, Abou Khalil NS, Abdel-Ghani MA. The protective role of folic acid against testicular dysfunction in lead-intoxicated rat model. Gen Physiol Biophys. 2017;36(3):297–308. doi:10.4149/gpb_2016048.
  • El-Magd MA, Kahilo KA, Nasr NE, Kamal T, Shukry M, Saleh AA. A potential mechanism associated with lead-induced testicular toxicity in rats. Andrologia. 2017;49(9):e12750. doi:10.1111/and.12750.
  • Shubina OS, Dudenkova NA. Effect of lead acetate on the productivity of the seminal glands of male albino rats. Res J Pharm Biol Chem Sci. 2015;6(1):1616–1621. doi:10.14202/vetworld.2016.1129-1134.
  • Sudjarwo S, Sudjarwo G, Koerniasari K. Protective effect of curcumin on lead acetate-induced testicular toxicity in Wistar rats. Res Pharm Sci. 2017;12(5):381–390. doi:10.4103/1735-5362.213983.
  • El-Sayed YS, El-Neweshy MS. Impact of lead toxicity on male rat reproduction at “hormonal and histopathological levels. Toxicol Environ Chem. 2010;92(4):765–774. doi:10.1080/02772240902984453.
  • Ommati MM, Ahmadi HN, Sabouri S, et al. Glycine protects the male reproductive system against lead toxicity via alleviating oxidative stress, preventing sperm mitochondrial impairment, improving kinematics of sperm, and blunting the downregulation of enzymes involved in the steroidogenesis. Environ Toxicol. 2022;37(12):2990–3006. doi:10.1002/tox.23654.
  • da Silva RF, Borges C dos S, Lamas C de A, Cagnon VHA, Kempinas W de G. Arsenic trioxide exposure impairs testicular morphology in adult male mice and consequent fetus viability. J Toxicol Environ Health A. 2017;80(19-21):1166–1179. doi:10.1080/15287394.2017.1376405.
  • Khan S, Telang A, Malik J. Arsenic-induced oxidative stress, apoptosis and alterations in testicular steroidogenesis and spermatogenesis in wistar rats: ameliorative effect of curcumin. Wudpecker J Pharm Pharmacol. 2013;2(May):33–48.
  • Souza ACF, Bastos DSS, Sertorio MN, et al. Combined effects of arsenic exposure and diabetes on male reproductive functions. Andrology. 2019;7(5):730–740. doi:10.1111/andr.12613.
  • Guvvala PR, Sellappan S, Parameswaraiah RJ. Impact of arsenic(V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice. Environ Sci Pollut Res Int. 2016;23(18):18200–18210. doi:10.1007/s11356-016-6870-3.
  • Celino FT, Yamaguchi S, Miura C, Miura T. Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction. 2009;138(2):279–287. doi:10.1530/REP-09-0167.
  • Souza ACF, Bastos DSS, Couto-Santos F, et al. Long-term reproductive effects in male rats prenatally exposed to sodium arsenite. Environ Toxicol. 2023;38(5):1162–1173. doi:10.1002/tox.23756.
  • Hayati A, Wulansari E, Armando DS, Sofiyanti A, Amin MHF, Adil, Pramudya M. Effects of in vitro exposure of mercury on sperm quality and fertility of tropical fish Cyprinus carpio L. Egypt J Aquat Res. 2019;45(2):189–195. doi:10.1016/j.ejar.2019.06.005.
  • Martinez CS, Escobar AG, Torres JGD, et al. Chronic exposure to low doses of mercury impairs sperm quality and induces oxidative stress in rats. J Toxicol Environ Health A. 2014;77(1-3):143–154. doi:10.1080/15287394.2014.867202.
  • Martinez CS, Torres JGD, Peçanha FM, et al. 60-Day chronic exposure to low concentrations of hgcl2 impairs sperm quality: Hormonal imbalance and oxidative stress as potential routes for reproductive dysfunction in rats. PLoS One. 2014;9(11):e111202. doi:10.1371/journal.pone.0111202.
  • Moussa H, Hachfi L, Trimèche M, Najjar MF, Sakly R. Accumulation of mercury and its effects on testicular functions in rats intoxicated orally by methylmercury. Andrologia. 2011;43(1):23–27. doi:10.1111/j.1439-0272.2009.01003.x.
  • Boujbiha MA, Hamden K, Guermazi F, et al. Testicular toxicity in mercuric chloride treated rats: Association with oxidative stress. Reprod Toxicol. 2009;28(1):81–89. doi:10.1016/j.reprotox.2009.03.011.
  • Madariaga-Mendoza D, Marrugo-Negrete J, Atencio-García V. Effect of inorganic mercury on semen quality, embryo and larval development of bocachico Prochilodus magdalenae. Fishes. 2023;8(9):445. doi:10.3390/fishes8090445.
  • Yoisungnern T, Das J, Choi YJ, Parnpai R, Kim JH. Effect of hexavalent chromium-treated sperm on in vitro fertilization and embryo development. Toxicol Ind Health. 2016;32(9):1700–1710. doi:10.1177/0748233715579805.
  • Marouani N, Tebourbi O, Mahjoub S, et al. Effects of hexavalent chromium on reproductive functions of male adult rats. Reprod Biol. 2012;12(2):119–133. doi:10.1016/S1642-431X(12)60081-3.
  • Pereira MDL, Das Neves RP, Oliveira H, Santos TM, De Jesus JP. Effect of Cr(V) on reproductive organ morphology and sperm parameters: An experimental study in mice. Environ Health. 2005;4:9. doi:10.1186/1476-069X-4-9.
  • Chandra AK, Chatterjee A, Ghosh R, Sarkar M. Vitamin E-supplementation protect chromium (VI)-induced spermatogenic and steroidogenic disorders in testicular tissues of rats. Food Chem Toxicol. 2010;48(3):972–979. doi:10.1016/j.fct.2010.01.008.
  • Hfaiedh M, Brahmi D, Zourgui L. Protective role of cactus cladodes extract on sodium dichromate-induced testicular injury and oxidative stress in rats. Biol Trace Elem Res. 2014;159(1–3):304–311. doi:10.1007/s12011-014-9969-8.
  • Wang R, Huang Y, Yu L, et al. The role of mitochondrial dynamics imbalance in hexavalent chromium-induced apoptosis and autophagy in rat testis. Chem Biol Interact. 2023;374:110424. doi:10.1016/j.cbi.2023.110424.
  • Benoff S, Jacob A, Hurley IR. Male infertility and environmental exposure to lead and cadmium. Hum Reprod Update. 2000;6(2):107–121. doi:10.1093/humupd/6.2.107.
  • Yari A, Sarveazad A, Asadi E, et al. Efficacy of Crocus sativus L. on reduction of cadmium-induced toxicity on spermatogenesis in adult rats. Andrologia. 2016;48(10):1244–1252. doi:10.1111/and.12568.
  • Danielsson BRG, Dencker L, Lindgren A, Tjalve H. Accumulation of toxic metals in male reproduction organs. Arch Toxicol Suppl. 1984;7(7):177–180. doi:10.1007/978-3-642-69132-4_26.
  • de Angelis C, Galdiero M, Pivonello C, et al. The environment and male reproduction: The effect of cadmium exposure on reproductive functions and its implication in fertility. Reprod Toxicol. 2017;73:105–127. doi:10.1016/j.reprotox.2017.07.021.
  • Thompson J, Bannigan J. Cadmium: Toxic effects on the reproductive system and the embryo. Reprod Toxicol. 2008;25(3):304–315. doi:10.1016/j.reprotox.2008.02.001.
  • Kar AB, DAS RP. Testicular changes in rats after treatment with cadmium chloride. Acta Biol Med Ger. 1960;5:153–173.
  • Badr FM, El-Habit O. Heavy Metal Toxicity Affecting Fertility and Reproduction of Males. Bioenvironmental Issues Affecting Men’s Reproductive and Sexual Health. Vol 2. 2018;293–304. doi:10.1016/B978-0-12-801299-4.00018-9.
  • Henson MC, Chedrese PJ. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med (Maywood). 2004;229(5):383–392. doi:10.1177/153537020422900506.
  • Chung NPY, Cheng CY. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology. 2001;142(5):1878–1888. doi:10.1210/endo.142.5.8145.
  • Lafuente R, García-Blàquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril. 2016;106(4):880–896. doi:10.1016/j.fertnstert.2016.08.022.
  • Sharma R, Garu U. Effects of lead toxicity on developing testes in swiss mice. Univers J Environ Res Technolgy. 2011;1(4):390–398. doi:10.13040/IJPSR.0975-8232.2(9).2403-07.
  • Flora G, Gupta D, Tiwari A. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. 2012;5(2):47–58. doi:10.2478/v10102-012-0009-2.
  • Santhosh Kumar R, Asha Devi S. Lead toxicity on male reproductive system and its mechanism: A review. Rese Jour of Pharm and Technol. 2018;11(3):1228–1232. doi:10.5958/0974-360X.2018.00228.7.
  • Wadi SA, Ahmad G. Effects of lead on the male reproductive system in mice. J Toxicol Environ Health A. 1999;56(7):513–521. doi:10.1080/009841099157953.
  • Flora SJS, Flora G, Saxena G, Mishra M. Arsenic and lead induced free radical generation and their reversibility following chelation. Cell Mol Biol (Noisy-le-Grand). 2007;53(1):26–47. doi:10.1170/T773.
  • Ahamed M, Siddiqui MKJ. Environmental lead toxicity and nutritional factors. Clin Nutr. 2007;26(4):400–408. doi:10.1016/j.clnu.2007.03.010.
  • Flora SJS. Nutritional components modify metal absorption, toxic response and chelation therapy. J Nutr Environ Med. 2002;12(1):53–67. doi:10.1080/13590840220123361.
  • Patra RC, Rautray AK, Swarup D. Oxidative stress in lead and cadmium toxicity and its amelioration. Vet Med Int. 2011;2011:457327–457329. doi:10.4061/2011/457327.
  • Singh N, Kumar A, Gupta VK, Sharma B. Biochemical and molecular bases of lead-induced toxicity in mammalian systems and possible mitigations. Chem Res Toxicol. 2018;31(10):1009–1021. doi:10.1021/acs.chemrestox.8b00193.
  • Huang H, Wang M, Hou L, et al. A potential mechanism associated with lead-induced spermatogonia and Leydig cell toxicity and mitigative effect of selenium in chicken. Ecotoxicol Environ Saf. 2021;209(July 2020):111671. doi:10.1016/j.ecoenv.2020.111671.
  • Mandal BK, Suzuki KT. Arsenic round the world: A review. Talanta. 2002;58(1):201–235. doi:10.1016/S0039-9140(02)00268-0.
  • Kim Y-J, Kim J-M. Arsenic toxicity in male reproduction and development. Dev Reprod. 2015;19(4):167–180. doi:10.12717/dr.2015.19.4.167.
  • Renu K, Madhyastha H, Madhyastha R, Maruyama M, Vinayagam S, Valsala Gopalakrishnan A. Review on molecular and biochemical insights of arsenic-mediated male reproductive toxicity. Life Sci. 2018;212:37–58. doi:10.1016/j.lfs.2018.09.045.
  • Uckun FM, Liu XP, D’Cruz OJ. Human sperm immobilizing activity of aminophenyl arsenic acid and its N-substituted quinazoline, pyrimidine, and purine derivatives: Protective effect of glutathione. Reprod Toxicol. 2002;16(1):57–64. doi:10.1016/S0890-6238(01)00195-2.
  • Tutkun L, Iritas S, Ilter H, Gunduzoz M, Deniz S. Effects of occupational lead exposure on testosterone secretion. Med Sci. 2018;7:886. doi:10.5455/medscience.2018.07.8880.
  • Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208. doi:10.2174/0929867053764635.
  • Pi J, Yamauchi H, Kumagai Y, et al. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect. 2002;110(4):331–336. doi:10.1289/ehp.02110331.
  • Wu M-M, Chiou H-Y, Wang T-W, et al. Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect. 2001;109(10):1011–1017. doi:10.2307/3454955.
  • Huang Q, Luo L, Alamdar A, et al. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity. Sci Rep. 2016;6(1):32518. doi:10.1038/srep32518.
  • Chang LW. Neurotoxic effects of mercury-A review. Environ Res. 1977;14(3):329–373. doi:10.1016/0013-9351(77)90044-5.
  • Guzzi GP, La Porta CAM. Molecular mechanisms triggered by mercury. Toxicology. 2008;244(1):1–12. doi:10.1016/j.tox.2007.11.002.
  • Pickhardt PC, Stepanova M, Fisher NS. Contrasting uptake routes and tissue distributions of inorganic and methylmercury in mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus). Environ Toxicol Chem. 2006;25(8):2132–2142. doi:10.1897/05-595R.1.
  • Rice KM, Walker EM, Wu M, Gillette C, Blough ER. Environmental mercury and its toxic effects. J Prev Med Public Health. 2014;47(2):74–83. doi:10.3961/jpmph.2014.47.2.74.
  • Lund BO, Miller DM, Woods JS. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol. 1993;45(10):2017–2024. doi:10.1016/0006-2952(93)90012-L.
  • Rao MV, Gangadharan B. Antioxidative potential of melatonin against mercury induced intoxication in spermatozoa in vitro. Toxicol Vitr. 2008;22(4):935–942. doi:10.1016/j.tiv.2008.01.014.
  • Arabi M, Heydarnejad MS. In vitro mercury exposure on spermatozoa from normospermic individuals. Pak J Biol Sci. 2007;10(15):2448–2453. doi:10.3923/pjbs.2007.2448.2453.
  • Leung TY, Choy CMY, Yim SF, Lam CWK, Haines CJ. Whole blood mercury concentrations in sub-fertile men in Hong Kong. Aust N Z J Obstet Gynaecol. 2001;41(1):75–77. doi:10.1111/j.1479-828X.2001.tb01298.x.
  • Kushwaha B, Beniwal R, Mohanty A, Kumar Singh A, Kumar Yadav R, Kumar Garg S. Effect of heavy metals on tyrosine kinases signaling during sperm capacitation. Infertil Assist Reprod. 2021;1:57. doi:10.5772/intechopen.99261.
  • Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2016;34(1):1–32. doi:10.1080/10590501.2015.1096883.
  • Farag AM, May T, Marty GD, et al. The effect of chronic chromium exposure on the health of Chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol. 2006;76(3–4):246–257. doi:10.1016/j.aquatox.2005.09.011.
  • Souza ACF, Marchesi SC, Ferraz RP, De Almeida Lima GD, De Oliveira JA, Machado-Neves M. Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats. J Toxicol Environ Health A. 2016;79(6):274–286. doi:10.1080/15287394.2016.1150926.
  • Sengupta P, Banerjee R. Environmental toxins: Alarming impacts of pesticides on male fertility. Hum Exp Toxicol. 2014;33(10):1017–1039. doi:10.1177/0960327113515504.
  • Giudice LC. Environmental toxicants: hidden players on the reproductive stage. Fertil Steril. 2016;106(4):791–794. doi:10.1016/j.fertnstert.2016.08.019.
  • Anifandis G, Katsanaki K, Lagodonti G, et al. The effect of glyphosate on human sperm motility and sperm DNA fragmentation. Int J Environ Res Public Health. 2018;15(6):1117. doi:10.3390/ijerph15061117.
  • Kavlock RJ, Daston GP, DeRosa C, et al. Research needs for the risk assessment of health and environmental effects of endocrine disrupters: A report of the U.S. EPA-sponsored workshop. Environ Health Perspect. 1996;104 Suppl 4(SUPPL. 4):715–740. doi:10.1289/ehp.96104s4715.
  • Sankoh AI, Whittle R, Semple KT, Jones KC, Sweetman AJ. An assessment of the impacts of pesticide use on the environment and health of rice farmers in Sierra Leone. Environ Int. 2016;94:458–466. doi:10.1016/j.envint.2016.05.034.
  • Kudavidanage EP, Dissanayake DMI, Rangi Keerthirathna WL, Lasni Wathima Nishshanke N, Peiris LDC. Commercial formulation of chlorpyrifos alters neurological behaviors and fertility. Biology (Basel). 2020;9(3):1–15. doi:10.3390/biology9030049.
  • Peiris DC, Dhanushka T. Low doses of chlorpyrifos interfere with spermatogenesis of rats through reduction of sex hormones. Environ Sci Pollut Res Int. 2017;24(26):20859–20867. doi:10.1007/s11356-017-9617-x.
  • Xu LC, Sun H, Chen JF, Bian Q, Song L, Wang XR. Androgen receptor activities of p,p′-DDE, fenvalerate and phoxim detected by androgen receptor reporter gene assay. Toxicol Lett. 2006;160(2):151–157. doi:10.1016/j.toxlet.2005.06.016.
  • Zhang SY, Ito Y, Yamanoshita O, et al. Permethrin may disrupt testosterone biosynthesis via mitochondrial membrane damage of leydig cells in adult male mouse. Endocrinology. 2007;148(8):3941–3949. doi:10.1210/en.2006-1497.
  • Whorton D, Milby TH, Krauss RM, Stubbs HA. Testicular function in DBCP exposed pesticide workers. J Occup Med. 1979;21(3):161–166.
  • Ayotte P, Giroux S, Dewailly É, et al. DDT spraying for malaria control and reproductive function in Mexican men author (s): Pierre Ayotte, Sylvie Giroux, Éric Dewailly, Mauricio Hernández Avila, Paulina Farias, Rogelio Danis and Carlos Villanueva Díaz Published by : Lippincott Williams. Epidemiology. 2016;12(3):366–367. doi:10.1097/00001648-200105000-00022.
  • Choudhary N, Joshi SC. Reproductive toxicity of endosulfan in male albino rats. Bull Environ Contam Toxicol. 2003;70(2):285–289. doi:10.1007/s00128-002-0189-0.
  • Mohamed WH, Ali MF, Yahia D, Hussein HA. Reproductive effects of sulfoxaflor in male Sprague Dawley rats. Environ Sci Pollut Res Int. 2022;29(30):45751–45762. doi:10.1007/s11356-022-19006-3.
  • Chao C, Qin Z, Jian Z, Xinhui J, Wanyong M, Jianhua Z. The reaction mechanism and kinetics for the reaction of OH radicals with atmospheric metolachlor. Russ J Phys Chem. 2018;92(7):1266–1273. doi:10.1134/S0036024418070087.
  • Mathias FT, Romano RM, Sleiman HK, de Oliveira CA, Romano MA. Herbicide metolachlor causes changes in reproductive endocrinology of male wistar rats. ISRN Toxicol. 2012;2012:130846–130847. doi:10.5402/2012/130846.
  • Gomes MP, Smedbol E, Chalifour A, et al. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. J Exp Bot. 2014;65(17):4691–4703. doi:10.1093/jxb/eru269.
  • Walsh LP, McCormick C, Martin C, Stocco DM. Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein expression. Environ Health Perspect. 2000;108(8):769–776. doi:10.2307/3434731.
  • Gonçalves BB, Nascimento NF, Santos MP, Bertolini RM, Yasui GS, Giaquinto PC. Low concentrations of glyphosate-based herbicide cause complete loss of sperm motility of yellowtail tetra fish Astyanax lacustris. J Fish Biol. 2018;92(4):1218–1224. doi:10.1111/jfb.13571.
  • Abarikwu SO, Akiri OF, Durojaiye MA, Adenike A. Combined effects of repeated administration of Bretmont Wipeout (glyphosate) and Ultrazin (atrazine) on testosterone, oxidative stress and sperm quality of Wistar rats. Toxicol Mech Methods. 2015;25(1):70–80. doi:10.3109/15376516.2014.989349.
  • Dodge AD. The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour. 1971;30(111):130–135. doi:10.1016/0160-9327(71)90039-1.
  • Chen Q, Zhang X, Zhao JY, Lu XN, Zheng PS, Xue X. Oxidative damage of the male reproductive system induced by paraquat. J Biochem Mol Toxicol. 2017;31(3):1–5. doi:10.1002/jbt.21870.
  • Quassinti L, Maccari E, Murri O, Bramucci M. Effects of paraquat and glyphosate on steroidogenesis in gonads of the frog Rana esculenta in vitro. Pestic Biochem Physiol. 2009;93(2):91–95. doi:10.1016/j.pestbp.2008.11.006.
  • Zarn JA, Brüschweiler BJ, Schlatter JR. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14α-demethylase and aromatase. Environ Health Perspect. 2003;111(3):255–261. doi:10.1289/ehp.5785.
  • Roelofs MJE, Temming AR, Piersma AH, van den Berg M, van Duursen MBM. Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro. Toxicol Rep. 2014;1:271–283. doi:10.1016/j.toxrep.2014.05.006.
  • El-Sharkawy EE, El-Nisr NA. Testicular dysfunction induced by penconazole fungicide on male albino rats. Comp Clin Pathol. 2013;22(3):475–480. doi:10.1007/s00580-012-1435-4.
  • Anifandis G, Amiridis G, Dafopoulos K, et al. The in vitro impact of the herbicide roundup on human sperm motility and sperm mitochondria. Toxics. 2017;6(1):2. doi:10.3390/toxics6010002.
  • Song Y, Jia ZC, Chen JY, Hu JX, Zhang LS. Toxic effects of atrazine on reproductive system of male rats. Biomed Environ Sci. 2014;27(4):281–288. doi:10.3967/bes2014.050.
  • De Liz Oliveira Cavalli VL, Cattani D, Heinz Rieg CE, et al. Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radic Biol Med. 2013;65:335–346. doi:10.1016/j.freeradbiomed.2013.06.043.
  • El-Nagar MMF, Elsisi AE. Exposure to bromoxynil octanoate herbicide induces oxidative stress, inflammation, and apoptosis in testicular tissue via modulating NF-кB pathway. Food Chem Toxicol. 2023;180:114008. doi:10.1016/j.fct.2023.114008.
  • Joshi SC, Gulati N, Sharma B, Sharma P. Effects of Tebuconazole (A fungicide) on Reproduction of Male Rat. Int J Pharma Res Heal Sci. 2016;4(6):1489–1494. doi:10.21276/ijprhs.2016.
  • Bayley M, Larsen PF, Baekgaard H, Baatrup E. The effects of vinclozolin, an anti-androgenic fungicide, on male guppy secondary sex characters and reproductive success. Biol Reprod. 2003;69(6):1951–1956. doi:10.1095/biolreprod.103.017780.
  • Costa NO, Vieira ML, Sgarioni V, et al. Evaluation of the reproductive toxicity of fungicide propiconazole in male rats. Toxicology. 2015;335:55–61. doi:10.1016/j.tox.2015.06.011.
  • Mehra BL, Sharma P, Kaushik U, Joshi SC, Unit RT. Effect of fytolan on testicular functions and sex hormones.World Journal of Pharmacy and Pharmceufical Sciences. 2014;3(9):817–829.
  • Ksheerasagar RL & Kaliwal, B. B. Effect of mancozeb on thyroid, testis, accessory reproductive organs and biochemical constituents in albino mice. Recent Research in Science and Technology. 2010;2(8):7–17.
  • Zheng X, Wei Y, Chen J, et al. Difenoconazole exposure induces retinoic acid signaling dysregulation and testicular injury in mice testes. Toxics. 2023;11(4):328. doi:10.3390/toxics11040328.
  • Dhanushka MAT, Peiris LDC. Cytotoxic and genotoxic effects of acephate on human sperm. J Toxicol. 2017;2017:3874817–3874816. doi:10.1155/2017/3874817.
  • Li YF, Pan C, Hu JX, Li J, Xu LC. Effects of cypermethrin on male reproductive system in adult rats. Biomed Environ Sci. 2013;26(3):201–208. doi:10.3967/0895-3988.2013.03.007.
  • Babazadeh M, Najafi G. Effect of chlorpyrifos on sperm characteristics and testicular tissue changes in adult male rats. Vet Res Forum an Int Q J. 2017;8(4):319–326.
  • Anbarkeh FR, Nikravesh MR, Jalali M, Sadeghnia HR, Sargazi Z, Mohammdzadeh L. Single dose effect of diazinon on biochemical parameters in testis tissue of adult rats and the protective effect of vitamin E. Iran J Reprod Med. 2014;12(11):731–736.
  • Aa Aly H, Alahdal AM, Bagalagel A, et al. Lindane induces spermatotoxicity and inhibits steroidogenesis in adult rats. Androl Gynecol Curr Res. 2017;04(03):4–11. doi:10.4172/2327-4360.1000150.
  • Scudeler EL, Daquila BV, de Carvalho SF, Conte H, Padovani CR, dos Santos DC. Azadirachtin-based insecticide impairs testis morphology and spermatogenesis of the southern armyworm Spodoptera eridania (Lepidoptera: Noctuidae). Pest Manag Sci. 2023;79(5):1650–1659. doi:10.1002/ps.7338.
  • EL-Hak HNG, Al-Eisa RA, Ryad L, Halawa E, El-Shenawy NS. Mechanisms and histopathological impacts of acetamiprid and azoxystrobin in male rats. Environ Sci Pollut Res Int. 2022;29(28):43114–43125. doi:10.1007/s11356-021-18331-3.
  • Zhang P, Zhao Y, Zhang H, et al. Low dose chlorothalonil impairs mouse spermatogenesis through the intertwining of Estrogen Receptor Pathways with histone and DNA methylation. Chemosphere. 2019;230:384–395. doi:10.1016/j.chemosphere.2019.05.029.
  • Ileriturk M, Benzer F, Aksu EH, et al. Chrysin protects against testicular toxicity caused by lead acetate in rats with its antioxidant, anti-inflammatory, and antiapoptotic properties. J Food Biochem. 2021;45(2):e13593. doi:10.1111/jfbc.13593.
  • Dehdari Ebrahimi N, Shojaei-Zarghani S, Taherifard E, et al. Protective effects of melatonin against physical injuries to testicular tissue: A systematic review and meta-analysis of animal models. Front Endocrinol (Lausanne). 2023;14:1123999. doi:10.3389/fendo.2023.1123999.
  • Olaniyan OT, Ojewale AO, Eweoya OO, et al. Modulatory role of Vitamin E on proton pump (ATPase) activity of cadmium chloride-induced testicular damage in wistar rats. Biomed Res Int. 2021;2021:4615384–4615387. doi:10.1155/2021/4615384.
  • Ali Abd El-Rahman H, Omar AR. Ameliorative effect of avocado oil against lufenuron induced testicular damage and infertility in male rats. Andrologia. 2022;54(11):e14580. doi:10.1111/and.14580.
  • Ijaz MU, Qamer M, Hamza A, et al. Sciadopitysin mitigates spermatological and testicular damage instigated by paraquat administration in male albino rats. Sci Rep. 2023;13(1):19753. doi:10.1038/s41598-023-46898-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.