12,255
Views
112
CrossRef citations to date
0
Altmetric
Articles

Progress in semiconductor diamond photodetectors and MEMS sensors

Pages 29-46 | Received 26 Sep 2020, Accepted 04 Jan 2020, Published online: 19 Feb 2021

References

  • Gabler J, Pleger S. Precision and micro CVD diamond-coated grinding tools. Int J Mach Tools Manuf. 2010;50(4):420–424.
  • Witzendorff P, Moalem A, Kling R, et al. Laser dressing of metal bonded diamond blades for cutting of hard brittle materials. J Laser Appl. 2012;24(2):022002.
  • Zeren M, Karagoz S. Sintering of polycrystalline diamond cutting tools. Mater Des. 2007;28(3):1055–1058.
  • Sexton TN, Cooley CH. Polycrystalline diamond thrust bearings for down-hole oil and gas drilling tools. Wear. 2009;267(5-8):1041–1045.
  • Schuelke T, Grotjohn TA. Diamond polishing. Diamond Relat Mater. 2013;32:17–26.
  • Liao M, Shen B, Wang Z. Ultra-wide bandgap semiconductor materials. Oxford (UK): Elsevier; 2019.
  • Wort CJH, Balmer RS. Diamond as an electronic material. Mater Today. 2008;11(1-2):22–28.
  • Umezawa H. Recent advances in diamond power semiconductor devices. Mater Sci Semicond Process. 2018;78:147–156.
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D Appl Phys. 2020;53(9):093001.
  • Kamo M, Sato Y, Matsumoto S, et al. Diamond synthesis from gas phase in microwave plasma. J Cryst Growth. 1983;62(3):642–644.
  • Matsumoto S, Sato Y, Kamo M, et al. Vapor deposition of diamond particles from methane. Jpn J Appl Phys. 1982;21(Part 2, No. 4):L183–L185.
  • Shinkata S. Single crystal diamond wafers for high power electronics. Diamond Relat Mater. 2016;65:168–175.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7(1):44462.
  • Aleksov A, Kubovic M, Kaeb M, et al. Diamond field effect transistors—concepts and challenges. Diamond Relat Mater. 2003;12(3-7):391–398.
  • Sasama Y, Komatsu K, Moriyama S, et al. High-mobility diamond field effect transistor with a monocrystalline h-BN gate dielectric. APL Mater. 2018;6(11):111105.
  • Syamsul M, Oi N, Okubo S, et al. Heteroepitaxial diamond field-effect transistor for high voltage applications. IEEE Electron Device Lett. 2018;39(1):51–54.
  • Liao M, Sang L, Shimaoka T, et al. Energy-efficient metal-insulator-metal-semiconductor field-effect transistor based on 2D carrier gas. Adv Electron Mater. 2019;5(5):1800832.
  • Kawarada H, Tsuboi H, Naruo T, et al. C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl Phys Lett. 2014;105(1):013510.
  • Umezawa H, Matsumoto T, Shikata S. Diamond metal–semiconductor field-effect transistor with breakdown voltage over 1.5 kV. IEEE Electron Device Lett. 2014;35(11):1112–1114.
  • Funaki T, Hirano M, Umezawa H, et al. High temperature switching operation of a power diamond Schottky barrier diode. IEICE Electron Express. 2012;9(24):1835–1841.
  • Zhou C, Wang J, Guo J, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina. Appl Phys Lett. 2019;114(6):063501.
  • Kasu M, Ueda K, Yamauchi Y, et al. Diamond-based RF power transistors: fundamentals and applications. Diamond Relat Mater. 2007;16(4-7):1010–1015.
  • Yu C, Zhou C, Guo J, et al. 650 mW/mm output power density of H-terminated polycrystalline diamond MISFET at 10 GHz. Electron Lett. 2020;56(7):334–335.
  • Hirama K, Takayanagi H, Yamauchi S, et al. High-performance p-channel diamond MOSFETs with alumina gate insulator. 2007 IEEE International Electron Devices Meeting; 2007; Dec 10–12; Washington, DC. p. 873–876.
  • Yu X, Zhou J, Qi C, et al. A high frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018;39(9):1373–1376.
  • Koizumi S, Watanabe K, Hasegawa M, et al. Ultraviolet emission from a diamond pn junction. Science. 2001;292(5523):1899–1901.
  • Kuwabara D, Makino T, Takeuchi D, et al. Unique temperature dependence of deep ultraviolet emission intensity for diamond light emitting diodes. Jpn J Appl Phys. 2014;53(5S1):05FP02.
  • Makino T, Yoshino K, Sakai N, et al. Enhancement in emission efficiency of diamond deep-ultraviolet light emitting diode. Appl Phys Lett. 2011;99(6):061110.
  • Liao M, Koide Y, Alvarez J. Thermally-stable visible-blind diamond photodiode using WC Schottky contact. Appl Phys Lett. 2005;87(2):022105.
  • Balducci A, Bruzzi M, De Sio A, et al. Diamond-based photoconductors for deep UV detection. Nucl Instrum Methods Phys Res A. 2006;567(1):188–191.
  • Kania DR, Landstrass MI, Plano MA, et al. Diamond radiation detectors. Diamond Relat Mater. 1993;2(5-7):1012–1019.
  • Chen M, Best JP, Shorubalko I, et al. Influence of helium ion irradiation on the structure and strength of diamond. Carbon. 2020;158:337–345.
  • Fern GR, Hobson PR, Metcalfe A, et al. Performance of four CVD diamond radiation sensors at high temperature. Nucl Inst. Methods Phys Res A. 2020;958(162486):162486.
  • Ueno K, Tadokoro T, Ueno Y, et al. Heat and radiation resistances of diamond semiconductor in gamma-ray detection. Jpn J Appl Phys. 2019;58(10):106509.
  • Gervino G, Bizzaro S, Palmisano C, et al. Characterization of CVD-diamonds for radiation detection. Nucl Instrum Methods Phys Res A. 2013;718:325–326.
  • Kohn E, Gluche P, Adamschik M. Diamond MEMS — a new emerging technology. Diamond Relat Mater. 1999;8(2-5):934–940.
  • Liao M, Sang L, Teraji T, et al. Single crystal diamond NEMS/MEMS with electrically tailored self-sensing enhancing actuation. Adv Mater Technol. 2019;4(2):1800325.
  • Possas-Abreu M, Rousseau L, Ghassemi F, et al. Biomimetic diamond MEMS sensors based on odorant-binding proteins: sensors validation through an autonomous electronic system. 2017 ISOCS/IEEE International Symposium on Olfaction and Electronic Nose (ISOEN); May 2017; Montréal, Canada. p.7968909.
  • Sumant A, Auciello O, Carpick R, et al. Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull. 2010;35(4):281–288.
  • Schirhagl R, Chang K, Loretz M, et al. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu Rev Phys Chem. 2014;65(1):83–105.
  • Faraon A, Santori C, Huang Z, et al. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys Rev Lett. 2012;109(3):033604.
  • Hall LT, Cole JH, Hill CD, et al. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys Rev Lett. 2009;103(22):220802.
  • Sarua A, Ji H, Hilton KP, et al. Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices. IEEE Trans Electron Devices. 2007;54(12):3152–3158.
  • Hirama K, Kasu M, Taniyasu Y. RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond. IEEE Electron Device Lett. 2012;33(4):513–515.
  • Han Y, Lau BL, Zhang X, et al. Enhancement of hotspot cooling with diamond heat spreader on Cu microchannel heat sink for GaN-on-Si device. IEEE Trans Compon Packag Manufact Technol. 2014;4(6):983–990.
  • Cheng Z, Bai T, Shi J, et al. Tunable thermal energy transport across diamond membranes and diamond − Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces. 2019;11(20):18517–18527. − 
  • Matsumae T, Kurashima Y, Umezawa H, et al. Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions. Appl Phys Lett. 2020;116(14):141602.
  • Howe RT, Muller RS. Polycrystalline silicon micromechanical beams. Electrochem Soc Spring Meeting. 1982;82(1):184–185.
  • Fang W, Li SS, Cheng CL, et al. CMOS MEMS: a key technology towards the “More than Moore” era. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII); 2013; Barcelona; p. 2513–2518.
  • Fischer AC, Forsberg F, Lapisa M, et al. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015;1:15005.
  • Sage E, Sansa M, Fostner S, et al. Single-particle mass spectrometry with arrays of frequency-addressed nanomechanical resonators. Nat Commun. 2018;9:3283.
  • Majumder S, Lampen J, Morrison R, et al. A packaged, high-lifetime ohmic MEMS RF switch. IEEE MTT-S International Microwave Symposium Digest; 2003; Philadelphia, PA, USA. Vol. 3, p. 1935–1938.
  • Awasthi S, Joshi A. MEMS accelerometer based system for motion analysis. 2015 2nd International Conference on Electronics and Communication Systems (ICECS); 2015; Coimbatore. p. 762–767.
  • Yeow TW, Law KLE, Goldenberg A. MEMS optical switches. IEEE Commun Mag. 2001;39(11):158–163.
  • Ahmed M, Butler DP, Celik-Butler Z. MEMS absolute pressure sensor on a flexible substrate. 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS); 2012; Paris. p. 575–578.
  • Robertson R, Fox JJ, Martin A. Two types of diamond. Philos Trans R. Soc Lond. 1934;A232(707-720):463–535.
  • McKeag RD, Chan SM, Jackman RB. Polycrystalline diamond photoconductive device with high UV-visible discrimination. Appl Phys Lett. 1995;67(15):2117–2119.
  • Semiconductor diamond. In: Liao M, Shen B, Wang Z, editors. Ultra-wide bandgap semiconductor materials; Oxford (UK): Elsevier; 2019. 111–261.
  • Polyakov VI, Rukovishnikov AI, Rossukanyi NM, et al. Photodetectors with CVD diamond films: Electrical and photoelectrical properties photoconductive and photodiode structures. Diamond Relat Mater. 1998;7(6):821–825.
  • Liao M, Sang L, Teraji T, et al. Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Jpn J Appl Phys. 2012;51(9R):090115.
  • Sang L, Liao M, Sumiya M. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors. 2013;13(8):10482–10518.
  • Bube RH. Photoelectronic properties of semiconductors. Cambridge: Cambridge University Press, 1992.
  • Sze SM. Physics of semiconductor devices. 2nd ed. New York: Wiley, 1981.
  • Feruglio S, Courcier T, Tsiakaka O, et al. A CMOS buried quad p-n junction photodetector model. IEEE Sensors J. 2016;16(6):1611–1620.
  • Alema F, Hertog B, Mukhopadhyay P, et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film. APL Mater. 2019;7(2):022527.
  • Teraji T, Yoshizaki S, Wada H, et al. Highly sensitive UV photodetectors fabricated using high-quality single-crystalline CVD diamond films. Diamond Relat Mater. 2004;13(4-8):858–862.
  • Liao M, Koide Y. High-performance metal-semiconductor-metal-deep-ultraviolet photodetectors based on homoepitaxial diamond thin film. Appl Phys Lett. 2006;89(11):113509.
  • Takeuchi D, Yamanaka S, Watanabe H, et al. Device grade B-doped homoepitaxial diamond thin films. Phys Stat Sol A. 2001;186(2):269–280.
  • Rohrer E, Graeff CFO, Janssen R, et al. Nitrogen-related dopant and defect states in CVD diamond. Phys Rev B. 1996;54(11):7874–7880.
  • Liao M, Koide Y, Alvarez J. Thermal stability of diamond photodiodes using WC as Schottky contact. Jpn J Appl Phys. 2005;44(11):7832–7838.
  • Liao M, Koide Y, Alvarez J. Crystallographic and electrical characterization of tungsten carbide thin films for Schottky contact of diamond photodiode. J Vac Sci Technol B. 2006;23(1):185–189.
  • Liao M, Alvarez J, Koide Y. Photovoltaic Schottky ultraviolet detectors fabricated on boron-doped homoepitaxial diamond layer. Appl Phys Lett. 2006;88(3):033504.
  • Liao M, Alvarez J, Koide Y. Single Schottky-barrier photodiode with interdigitated finger geometry: application to diamond. Appl Phys Lett. 2007;90(12):123507.
  • Koizumi S, Kamo M, Sato Y, et al. Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl Phys Lett. 1997;71(8):1065–1967.
  • BenMoussa A, Schuhle U, Scholze F, et al. Radiometric characteristics of new diamond pin-photodiodes. Meas Sci Technol. 2006;17(4):913–917.
  • Sang L, Hu J, Zou R, et al. Arbitrary multicolor photodetection by hetero-integrated semiconductor nanostructures. Sci Rep. 2013;3(1):2368.
  • Chen Y, Lu Y, Lin C, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J Mater Chem C. 2018;6(21):5727–5732.
  • Liu Z, Li F, Li S, et al. Fabrication of UV photodetector on TiO2/diamond film. Sci Rep. 2015;5(1):14420.
  • Chang X, Wang Y, Zhang X, et al. UV-photodetector based on NiO/diamond film. Appl Phys Lett. 2018;112(3):032103.
  • Alvarez J, Liao M, Koide Y, et al. Ultraviolet detectors based on ultraviolet–ozone modified hydrogenated diamond surfaces. Appl Phys Express. 2009;2(6):065501.
  • Alvarez J, Liao M, Koide Y. Large deep-ultraviolet photocurrent in metal-semiconductor-metal structures fabricated on as-grown boron-doped diamond. Appl Phys Lett. 2005;87(11):113507.
  • Lin C, Lu Y, Yang X, et al. Diamond‐based all‐carbon photodetectors for solar‐blind imaging. Adv Opt Mater. 2018;6(15):1800068.
  • Lin C, Lu Y, Tian Y, et al. Diamond based photodetectors for solar-blind communication. Opt Exp. 2019;27(21):29962.
  • Carrano JC, Lambert DJH, Eiting CJ, et al. GaN avalanche photodiodes. Appl Phys Lett. 2000;76(7):924–926.
  • Katz O, Garber V, Meyler B, et al. Gain mechanism in GaN Schottky ultraviolet detectors. Appl Phys Lett. 2001;79(10):1417–1419.
  • Liao M, Koide Y, Alvarez J, et al. Persistent positive and transient negative photoconductivity in diamond photodetectors. Phys Rev B. 2008;78(4):045112.
  • Liao M, Wang X, Teraji T, et al. Light intensity dependence of photocurrent gain in single crystal diamond photodetectors. Phys Rev B. 2010;81(3):033304.
  • Koide Y, Liao M, Alvarez J, et al. Schottky photodiode using submicron thick diamond epilayer for flame sensing. Nano-Micro Lett. 2009;1(1):30–33.
  • Zhou AF, Velazquez R, Wang X, et al. Nanoplasmonic 1D diamond UV photodetectors with high performance. ACS Appl Mater Interfaces. 2019;11(41):38068–38074.
  • Lu YJ, Lin CN, Shan CX, et al. Growth, properties, and photodetection applications. Adv Opt Mater. 2018;6(20):1800359.
  • Liu Z, Zhao D, Ao J, et al. Responsivity improvement of Ti–diamond–Ti structured UV photodetector through photocurrent gain. Opt Exp. 2018;26(13):17092–17098.
  • Sumant AV, Auciello O, Liao M, et al. MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bull. 2014;39(6):511–516.
  • Liao M, Koide Y. Carbon-based materials: growth, properties, MEMS/NEMS technologies, and MEM/NEM switches. Crit Rev Solid State Mater Sci. 2011;36(2):66–101.
  • Najar H, Yang C, Heidari A, et al. Quality factor in polycrystalline diamond micromechanical flexural resonators. J Microelectromech Syst. 2015;24(6):2152–2160.
  • Gaidarzhy A, Imboden A, Mohanty P, et al. High quality factor gigahertz frequencies in nanomechanical diamond resonators. Appl Phys Lett. 2007;91(20):203503.
  • Srinivasan S, Hiller J, Kabius B, et al. Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems. Appl Phys Lett. 2007;90(13):134101.
  • Adiga VP, Sumant AV, Sumant S, et al. Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys Rev B. 2009;79(24):245403.
  • Liao M, Li C, Hishita S, et al. Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems. J Micromech Microeng. 2010;20(8):085002.
  • Ovartchaiyapong P, Pascal LMA, Myers BA, et al. High quality factor single-crystal diamond mechanical resonators. Appl Phys Lett. 2012;101(16):163505.
  • Tao Y, Boss JM, Moores BA, et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat Commun. 2014;5:3638.
  • Burek MJ, de Leon NP, Shields BJ, et al. Free-standing mechanical and photonic nanostructures in single-crystal diamond. Nano Lett. 2012;12(12):6084–6089.
  • Sohn YI, Miller R, Venkataraman V, et al. Mechanical and optical nanodevices in single-crystal quartz. Appl Phys Lett. 2017;111(26):263103.
  • Latawiec P, Burek MJ, Sohn YI, et al. Faraday cage angled-etching of nanostructures in bulk dielectrics. J Vac Sci Technol B. 2016;34(4):041801.
  • Parikh NR, Hunn JD, McGucken E, et al. Single-crystal diamond plate liftoff achieved by ion implantation and subsequent annealing. Appl Phys Lett. 1992;61(26):3124–3126.
  • Marchywka M, Pehrsson PE, Vestyck DJ, et al. Low energy ion implantation and electrochemical separation of diamond films. Appl Phys Lett. 1993;63(25):3521–3523.
  • Wang CF, Hu EL, Yang J, et al. Fabrication of suspended single crystal diamond devices by electrochemical etch. J Vac Sci Technol B. 2007;25(3):730–733.
  • Olivero P, Rubanov S, Reichart P, et al. Ion‐beam‐assisted lift‐off technique for three‐dimensional micromachining of freestanding single‐crystal diamond. Adv Mater. 2005;17(20):2427–2430.
  • Liao M, Hishita S, Watanabe E, et al. Suspended single‐crystal diamond nanowires for high‐performance nanoelectromechanical switches. Adv Mater. 2010;22(47):5393–5397.
  • Miller JML, Ansari A, Heinz DB, et al. Effective quality factor tuning mechanisms in micromechanical resonators. Appl Phys Rev. 2018;5(4):041307.
  • Smith DPE. Limits of force microscopy. Rev Sci Instrum. 1995;66(5):3191–3195.
  • Albrecht TR, Grutter P, Horne D, et al. Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity. J Appl Phys. 1991;69(2):668–673.
  • Masmanidis SC, Karabalin RB, De Vlaminck I, et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science. 2007;317 (5839):780–783.
  • Rugar D, Grütter P. Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett. 1991;67(6):699–702.
  • Knobel RD, Cleland AN. Nanometre-scale displacement sensing using a single electron transistor. Nature. 2003;424(6946):291–293.
  • Sampathkumar A, Murray TW, Ekinci KL. Photothermal operation of high frequency nanoelectromechanical systems. Appl Phys Lett. 2006;88(22):223104.
  • Bargatin I, Kozinsky I, Roukes ML. Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Appl Phys Lett. 2007;90(9):093116.
  • Liao M, Toda M, Sang L, et al. Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators. Appl Phys Lett. 2014; 105(25): 251904.
  • Gavan KB, Westra HJR, Drift EW, et al. Size-dependent effective Young’s modulus of silicon nitride cantilevers. Appl Phys Lett. 2009;94(23):233108.
  • Liao M, Koide Y, Sang L. Single crystal diamond micromechanical and nanomechanical resonators. In: Yang N, editor. Novel aspects of diamond. Topics in applied physics. Vol. 121. Chapter 4. Cham: Springer; 2019.
  • Lifshitz R, Roukes ML. Thermoelastic damping in micro- and nanomechanical systems. Phys Rev B. 2000;61(8):5600–5609.
  • Photiadis DM, Judge JA. Attachment losses of high oscillators. Appl Phys Lett. 2004;85(3):482–485.
  • Yang J, Ono T, Esashi M. Energy dissipation in submicrometer thick single-crystal silicon cantilevers. J Microelectromech Syst. 2002;11(6):775–783.
  • Adiga VP. Mechanical stiffness and diffipation in ultrananocrystalline diamond films. Publicly accessible Penn Dissertations; 2010. Paper 413.
  • Liao M, Toda M, Sang L, et al. Improvement of the quality factor of single crystal diamond mechanical resonators. Jpn J Appl Phys. 2017;56(2):024101.
  • Wu H, Sang L, Teraji T, et al. Reducing energy dissipation and surface effect of diamond nanoelectromechanical resonators by annealing in oxygen ambient. Carbon. 2017;124:281–187.
  • Wu H, Sang L, Li Y, et al. Reducing intrinsic energy dissipation in diamond-on-diamond mechanical resonators toward one million quality factor. Phys Rev Mater. 2018;2(9):090601.
  • Cooper A, Magesan E, Yum H, et al. Time-resolved magnetic sensing with electronic spins in diamond. Nat Commun. 2014;5:3141.
  • Park B, Li M, Liyanage S, et al. Lorentz force based resonant MEMS magnetic-field sensor with optical readout. Sens Actuator A Phys. 2016;241:12–18.
  • Niekiel F, Su J, Bodduluri MT, et al. Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets. Sens Actuator A Phys. 2019;297:111560.
  • Gojdka B, Jahns R, Meurisch K, et al. Fully integrable magnetic field sensor based on delta-E effect. Appl Phys Lett. 2011;99(22):223502.
  • Zhang Z, Wu H, Sang L, et al. Single-crystal diamond microelectromechanical resonator integrating with magneto-strictive galfenol film for magnetic sensor. Carbon. 2019;152:788–795.
  • Zhang Z, Wu Y, Sang L, et al. Coupling of magneto-strictive FeGa film with single-crystal diamond MEMS resonator for high-reliability magnetic sensing at high temperatures. Mater Res Lett. 2020;8(5):180–186.
  • Zhang Z, Wu H, Sang L, et al. Enhancing delta E effect at high temperatures of galfenol-Ti-single crystal diamond resonators for magnetic sensing. ACS Appl Mater Interfaces. 2020;12(20):23155–23164.
  • Zhang Z, Sang L, Huang J, et al. Enhanced magnetic sensing performance of diamond MEMS magnetic sensor with boron-doped FeGa film. Carbon. 2020; 170: 294–301.
  • Wulz T, Gerding W, Lavrik N, et al. Realization of deep 3D metal electrodes in diamond radiation detectors. Appl Phys Lett. 2018;112(22):222101.