1,737
Views
1
CrossRef citations to date
0
Altmetric
Review

Research progress of diamond/aluminum composite interface design

, , , , , , , , & show all
Pages 25-39 | Received 14 Dec 2021, Accepted 03 Mar 2022, Published online: 14 Jul 2022

References

  • Edwards C. Moore’s law: What comes next?. Commun ACM. 2021; 64(2):12–14.
  • Grier DA. Forgetting Moore’s law. Computer. 2021; 54(6):46–48.
  • Waldrop MM. The chips are down for Moore’s law. Nature. 2016; 530(7589):144–147.
  • Xingcun T. Advanced materials for thermal management of electronic packaging. Springer New York, 2011.
  • Zhou HY, Li YQ, Wang HM, et al. Fabrication of functionally graded diamond/Al composites by Liquid-Solid separation technology. Materials. 2021; 14(12):3205.
  • Zhou HY, Ran MR, Li YQ, et al. Effect of diamond particle size on the thermal properties of diamond/Al composites for packaging substrate. Acta Metall Sinica. 2021; 57(7):937–947.
  • Zhou HY, Ran MR, Li YQ, et al. Improvement of thermal conductivity of diamond/Al composites by optimization of liquid-solid separation process. J Mater Process Technol. 2021; 297:117267.
  • Xie HN, Chen YT, Zhang TB, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study [J]. Appl Surf Sci. 2020; 527:146817.
  • Hasselman DPH, Johnson LF. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Compos Mater. 1987; 21(6):508–515.
  • T R, M JM, W L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast. Scr Mater. 2006; 56(5).
  • Molina J-M, Rhême M, Carron J, et al. Thermal conductivity of aluminum matrix composites reinforced with mixtures of diamond and SiC particles. Scr Mater. 2008;58(5):393–396.
  • Zhang L. Research on configuration design, preparation and thermal conductivity of diamond aluminum composite. Central South University, 2019. (In Chinese).
  • Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites. Scr Mater. 2015; 109:72–75.
  • Tan Z, Li Z, Xiong D-B, et al. A predictive model for interfacial thermal conductance in surface metallized diamond aluminum matrix composites. Materials & Design. 2014; 55:257–262.
  • Yuan M, Tan Z, Fan G, et al. Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites. Diamond Relat Mater. 2018; 81:38–44.
  • Fathzadeh M, Fahrvandi H, Nadimi E. Electronic properties of graphene-ZnO interface: a density functional theory investigation. Nanotechnology. 2020; 31(2):025710.
  • Chen L, Chen ST, Hou Y. Understanding the thermal conductivity of diamond/copper composites by first-principles calculations. Carbon. 2019; 148:249–257.
  • Zhao ZY, Zhao WJ, Bai PK, et al. The interfacial structure of Al/Al4C3 in graphene/Al composites prepared by selective laser melting: First-principles and experimental. Mater Lett. 2019; 255:126559.
  • Zhang H, Huang Y, et al. First-principles study of Al atom diffusion kinetics on Si surface. J Phys. 2019; 68(20):274–282. (In Chinese)
  • Zhu P, Zhang Q, et al. First-principles calculation and interface reaction of diamond/aluminum composite material interface properties. J Phys. 2021;70(17):263–273. (In Chinese)
  • Sznajder M. DFT-based modelling of carbon adsorption on the AlN surfaces and influence of point defects on the stability of diamond/AlN interfaces. Diamond Relat Mater. 2020; 103:107694.
  • Wang C, Liang SH, Jiang YH. In-situ fabrication and characteristics of an Al4W/Al12W composite using infiltration method. Vacuum. 2019; 160:95–101.
  • Wang C, Liang SH, Cui J, et al. First-principles study of the mechanical and thermodynainic propertips of Al4W, Al5W and Al12W under pressure. Vacuum. 2019; 169:108844.
  • Song C, Kong XS, Liu CS. First-principles studies on carbon diffusion in tungsten. Chinese Phys B. 2019; 28(11):116106.
  • Yi HX, Wang JC, et al. First-principles calculations of the structure, mechanics, electronics, optics and thermodynamic properties of tungsten carbide crystals under high temperature and high pressure. J Phys. 2020; 37(02):239–249. (In Chinese)
  • Gu KX, Pang MJ, Zhan YZ. Insight into interfacial structure and bonding nature of diamond(001)/Cr3C2(001) interface. J Alloys Compd. 2019; 770:82–89.
  • Pang XZ, Yang XY, Yang JB, et al. Investigation on the interface characteristic between ZrC (111) and diamond (111) surfaces by first-principles calculation. Diamond Relat Mater. 2021; 113:108297.
  • Wu ZX, Zhan YZ, Xiong L, et al. Properties and electronic structure of Al/Mo2C interfaces: insights from first principle simulation. Philos Mag. 2021; 101(9):1061–1080.
  • Chen G, Yang W, Xin L, et al. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J Alloys Compd. 2018; 735:777–786.
  • Ji G, Tan Z, Lu Y, et al. Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite. Mater Charact. 2016; 112:129–133.
  • Yang W, Chen G, Wang P, et al. Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. J Alloys Compd. 2017; 726:623–631.
  • Che Z, Li J, Wang Q, et al. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos Part A: Appl Sci Manuf. 2018; 107:164–170.
  • Xin L, Tian X, Yang W, et al. Enhanced stability of the diamond/Al composites by W coatings prepared by the magnetron sputtering method. J Alloys Compd. 2018; 763:305–313.
  • Zhang C, Cai Z, Wang R, et al. Microstructure and thermal properties of Al/W-coated diamond composites prepared by powder metallurgy. Mater Design. 2016; 95:39–47.
  • Che Z, Wang Q, Wang L, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration. Compos Part B: Eng. 2017; 113:285–290.
  • Wu JH, Zhang HL, Zhang Y, et al. The role of Ti coating in enhancing tensile strength of Al/diamond composites. Mater Sci Eng – Struct Mater Prop Microstruct Process. 2013; 565:33–37.
  • Liang X, Jia C, Chu K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering [J]. J Compos Mater. 2012; 46(9):1127–1136.
  • Yang B, Yu J-K, Chen C. Microstructure and thermal expansion of Ti coated diamond/Al composites. Trans Nonferrous Metals Soc China. 2009; 19(5):1167–1173.
  • Zhang H, Wu J, Zhang Y, et al. Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration. Mater Sci Eng A. 2015; 626:362–368.
  • Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites. Appl Surf Sci. 2017; 402:372–383.
  • Xie H, Chen Y, Zhang T, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study. Appl Surf Sci. 2020; 527:146817.
  • Sun Y, Zhang C, He L, et al. Enhanced bending strength and thermal conductivity in diamond/Al composites with B4C coating. Sci Rep. 2018; 8(1):11104.
  • Li N, Wang L, Dai J, et al. Interfacial products and thermal conductivity of diamond/Al composites reinforced with ZrC-coated diamond particles. Diamond Relat Mater. 2019; 100:107565.
  • Li X, Yang W, Sang J, et al. Low-temperature synthesizing SiC on diamond surface and its improving effects on thermal conductivity and stability of diamond/Al composites. J Alloys Compd. 2020; 846:156258.
  • Guo C, He X, Ren S, et al. Effect of (0–40) wt. % Si addition to Al on the thermal conductivity and thermal expansion of diamond/Al composites by pressure infiltration. J Alloys Compd. 2016; 664:777–783.
  • Mizuuchi K, Inoue K, Agari Y, et al. Processing of diamond particle dispersed aluminum matrix composites in continuous solid–liquid co-existent state by SPS and their thermal properties. Compos Part B: Eng. 2011;42(4):825–831.
  • Edtmaier C, Segl J, Rosenberg E, et al. Microstructural characterization and quantitative analysis of the interfacial carbides in Al(Si)/diamond composites. J Mater Sci. 2018; 53(22):15514–15529.
  • Zhang Y, Li J, Zhao L, et al. Effect of metalloid silicon addition on densification, microstructure and thermal–physical properties of Al/diamond composites consolidated by spark plasma sintering. Mater Design. 2014;63:838–847.
  • Zhang H, Wu J, Zhang Y, et al. Effect of metal matrix alloying on mechanical strength of diamond Particle-Reinforced aluminum composites. J Mater Eng Perform. 2015; 24(6):2556–2562.
  • Liu XY, Wang WG, Wang D, et al. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites. Mater Chem Phys. 2016; 182:256–262.
  • Guo C-Y, He X-B, Ren S-B, et al. Thermal properties of diamond/Al composites by pressure infiltration: comparison between methods of coating Ti onto diamond surfaces and adding Si into Al matrix. Rare Met. 2016; 35(3):249–255.
  • Monje IE, Louis E, Molina JM. On critical aspects of infiltrated Al/diamond composites for thermal management: Diamond quality versus processing conditions. Compos Part A: Appl Sci Manuf. 2014; 67:70–76.
  • Weber L, Tavangar R. Diamond-based metal matrix composites for thermal management made by liquid metal Infiltration-Potential and limits. Linsmeier C, Reinelt M, editor, 1st International Conference on New Materials for Extreme Environments, Stafa-Zurich: Trans Tech Publications Ltd, 2009, pp. 111–115.
  • Zhang Y, Li J, Zhao L, et al. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure. J Mater Sci. 2015; 50(2):688–696.
  • Li C, Wang X, Wang L, et al. Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere [J]. Mater Design. 2016; 92:643–648.
  • Long J, Li X, Fang D, et al. Fabrication of diamond particles reinforced Al-matrix composites by hot-press sintering. Int J Refract Met Hard Mater. 2013; 41:85–89.
  • Tan Z, Li Z, Fan G, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties. Compos Part B: Eng. 2013; 47:173–180.
  • Tan Z, Li Z, Fan G, et al. Diamond/aluminum composites processed by vacuum hot pressing: Microstructure characteristics and thermal properties. Diamond Relat Mater. 2013; 31:1–5.
  • Tan Z, Ji G, Addad A, et al. Tailoring interfacial bonding states of highly thermal performance diamond/Al composites: Spark plasma sintering vs. vacuum hot pressing. Compos Part A: Appl Sci Manuf. 2016; 91:9–19.
  • Mizuuchi K, Inoue K, Agari Y, et al. Thermal conductivity of diamond particle dispersed aluminum matrix composites fabricated in solid–liquid co-existent state by SPS. Compos Part B: Eng. 2011;42(5):1029–1034.
  • Beffort O, Khalid FA, Weber L, et al. Interface formation in infiltrated Al(Si)/diamond composites. Diamond Relat Mater. 2006; 15(9):1250–1260.
  • Wu JH, Zhang HL, Zhang Y, et al. Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites. Mater Design. 2012; 39:87–92.
  • Wang P, Xiu Z, Jiang L, et al. Enhanced thermal conductivity and flexural properties in squeeze casted diamond/aluminum composites by processing control. Mater Design. 2015; 88:1347–1352.
  • Mizuuchi K, Inoue K, Agari Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al–matrix composite fabricated by SPS. Microelectron Reliab. 2014;54(11):2463–2470.
  • Tan Z, Xiong D-B, Fan G, et al. Enhanced thermal conductivity of diamond/aluminum composites through tuning diamond particle dispersion. J Mater Sci. 2018; 53(9):6602–6612.
  • Chen PJ, Zeng YC, et al. Analysis of thermal conductivity of diamond/Al composites prepared by hot-press sintering and pressure infiltration. Funct Mater. 2016;47(10):10184–10188. (In Chinese)
  • Zhang L, Wei Q, An J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management. Chem Eng J. 2020; 380:122551.
  • Liu RX, Luo GQ, Li Y, et al. Microstructure and thermal properties of diamond/copper composites with Mo2C in-situ nano-coating. Surf Coatings Technol. 2019; 360:376–381.
  • Ye W, Wei Q, Zhang L, et al. Macroporous diamond foam: a novel design of 3D interconnected heat conduction network for thermal management. Mater Design. 2018; 156:32–41.
  • An JJ, Wei QP, et al. Effect of surface modification of foamed copper on high quality foamed diamond by chemical vapor deposition. Surf Technol. 2020; 49(3):97–105. (In Chinese)
  • Maiorano LP, Molina JM. Guiding heat in active thermal management: One-pot incorporation of interfacial ­nano-engineered aluminium/diamond composites into aluminium foams. Compos Part A. 2020:133(2020):105859.
  • Philippe G, E KU, A KF, et al. Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites. Microsc Microanal: Off J Microsc Soc Am. Microbeam Anal Soc Microscop Soc Canada. 2004; 10(2):311–316.
  • Khalid FA, Beffort O, Klotz UE, et al. Microstructure and interfacial characteristics of aluminium-diamond composite materials. Diamond Relat Mater. 2004; 13(3):393–400.
  • Monje IE, Louis E, Molina JM. Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption. Scr Mater. 2016;115:159–163.
  • Kleiner S, Khalid FA, Ruch PW, et al. Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium. Scr Mater. 2006; 55(4):291–294.
  • Che Z, Zhang Y, Li J, et al. Nucleation and growth mechanisms of interfacial Al4 C3 in Al/diamond composites. J Alloys Compd. 2016; 657:81–89.
  • Lu Y, Wang X, Zhang Y, et al. Aluminum carbide hydrolysis induced degradation of thermal conductivity and tensile strength in diamond/aluminum composite. J Compos Mater. 2018; 52(20):2709–2717.
  • Lu CJ, Lu Chenjun, Xu J, et al. Performance decline and suppression of diamond/Al (or AlSi alloy) composites. J Compos Mater. 2019; 36(03):669–676. (In Chinese)