1,550
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study of horizontal and vertical uniformity of B-doped layer on mosaic single crystal diamond wafers by using hot-filament chemical vapor deposition

& ORCID Icon
Pages 46-52 | Received 28 Mar 2022, Accepted 18 Apr 2022, Published online: 05 May 2022

References

  • Doping and semiconductor characterizations. In: Koizumi S, Pernot J, Umezawa H, Suzuki M, editors. Power electronics device applications of diamond semiconductors. Sawston: Woodhead Publishing; 2018. pp. 99–189.
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D Appl Phys. 2020;53(9):093001.
  • Achard J, Jacques V, Tallaire A. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. J Phys D Appl Phys. 2020;53(31):313001.
  • Zheng Y, Li C, Liu J, et al. Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics. Front Mater Sci. 2022;16(1):220590.
  • Sumiya H, Tamasaku K. Large defect-free synthetic type IIa diamond crystals synthesized via high pressure and high temperature. Jpn J Appl Phys. 2012;51:090102.
  • Tsao JY, Chowdhury S, Hollis MA, et al. Ultrawide‐bandgap semiconductors: research opportunities and challenges. Adv Electron Mater. 2018;4(1):1600501.
  • Schreck M, Gsell S, Brescia R, et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci Rep. 2017;7:44462.
  • Kim SW, Takaya R, Hirano S, et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire (1120) misoriented substrate by step-flow mode. Appl Phys Express. 2021;14(11):115501.
  • Yamada H, Chayahara A, Mokuno Y, et al. A 2-in. mosaic wafer made of a single-crystal diamond. Appl Phys Lett. 2014;104(10):102110.
  • Seki Y, Hoshino Y, Nakata J. Extremely high-efficient activation of acceptor boron introduced by ion implantation at room temperature with various doping concentrations in epitaxially synthesized diamond films by chemical vapor deposition. J Appl Phys. 2021;129(19):195702.
  • Haruyama M, Onoda S, Higuchi T, et al. Triple nitrogen-vacancy Centre fabrication by C5N4Hn ion implantation. Nat Commun. 2019;10(1):2664.
  • Ohmagari S, Yamada H, Tsubouchi N, et al. Schottky barrier diodes fabricated on diamond mosaic wafers: dislocation reduction to mitigate the effect of coalescence boundaries. Appl Phys Lett. 2019;114(8):082104.
  • Ohmagari S, Ogura M, Umezawa H, et al. Lifetime and migration length of B-related admolecules on diamond {1 0 0}-surface: comparative study of hot-filament and microwave plasma-enhanced chemical vapor deposition. J Crystal Growth. 2017;479:52–58.
  • Ohmagari S, Srimongkon K, Yamada H, et al. Low resistivity p + diamond (100) films fabricated by hot-filament chemical vapor deposition. Diamond Relat Mater. 2015;58:110–114.
  • Tokuda N, Umezawa H, Saito T, et al. Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diamond Relat Mater. 2007;16(4–7):767–770.
  • Schäfer L, Höfer M, Kröger R. The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films. 2006;515(3):1017–1024.
  • Auciello O. Science and technology of a transformational multifunctional ultrananocrystalline diamond (UNCDTM) coating. Funct Diamond. 2022;2(1):1–24.
  • Takamori Y, Nagai M, Tabakoya T, et al. Insight into temperature impact of ta filaments on high-growth-rate diamond (100) films by hot-filament chemical vapor deposition. Diamond Relat Mater. 2021;118:108515.
  • Tabakoya T, Kanada S, Wakui Y, et al. High‐rate growth of single‐crystalline diamond (100) films by hot‐filament chemical vapor deposition with tantalum filaments at 3000 °C. Phys Status Solidi A. 2019;216(21):1900244.
  • Wu Y, Zhang H, Yan G, et al. Hot filament chemical vapor deposition temperature field optimization for diamond films deposited on silicon nitride substrates. Mater Res Express. 2021;8(11):116403.
  • Alcantar-Peña JJ, Montes J, Arellano-Jimenez MJ, et al. Low temperature hot filament chemical vapor deposition of ultrananocrystalline diamond films with tunable sheet resistance for electronic power devices. Diamond Relat Mater. 2016;69:207–213.
  • Zhang T, Qian Y, Wang S, et al. Influence of the heat dissipation mode of long-flute cutting tools on temperature distribution during HFCVD diamond films. Crystals. 2019;9:394.
  • Yamada H, Chayahara A, Umezawa H, et al. Fabrication and fundamental characterizations of tiled clones of single-crystal diamond with 1-inch size. Diamond Relat Mater. 2012;24:29–33.
  • Katamune Y, Mori D, Arikawa D, et al. n-Type doping of diamond by hot-filament chemical vapor deposition growth with phosphorus incorporation. Appl Phys A. 2020;126(11):879.
  • Yamada H. Numerical simulations to study growth of Single-Crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species. Jpn J Appl Phys. 2012;51:090105.
  • Bustarret E, Gheeraert E, Watanabe K. Optical and electronic properties of heavily boron-doped homo-epitaxial diamond. Phys Stat Sol (a). 2003;199(1):9–18.
  • Issaoui R, Tallaire A, Mrad A, et al. Defect and threading dislocations in single crystal diamond: a focus on boron and nitrogen codoping. Phys Status Solidi A. 2019;216(21):1900581.
  • Yamada H, Chayahara A, Ohmagari S, et al. Factors to control uniformity of single crystal diamond growth by using microwave plasma CVD. Diamond Relat Mater. 2016;63:17–20.
  • Yamada H, Chayahara A, Ohmagari S, et al. Effect of Ar addition on uniformity of diamond growth by using microwave plasma chemical vapor deposition. Diamond Relat Mater. 2018;87:143–148.