2,152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Room-temperature bonding of GaN and diamond via a SiC layer

, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 142-150 | Received 04 Jul 2022, Accepted 04 Nov 2022, Published online: 01 Dec 2022

References

  • Wu Y, Saxler A, Moore M, et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Device Lett. 2004;25(3):117–119.
  • Ohki T, Yamada A, Minoura Y, et al. An over 20-W/mm S-band InAlGaN/GaN HEMT with SiC/diamond-bonded heat spreader. IEEE Electron Device Lett. 2019;40(2):287–290.
  • Tadjer M, Anderson T, Ancona M, et al. GaN-on-Diamond HEMT technology with T AVG= 176° C at P DC, max= 56 W/mm measured by transient thermoreflectance imaging. IEEE Electron Device Lett. 2019;40(6):881–884.
  • Sun H, Pomeroy J, Simon R, et al. Temperature-dependent thermal resistance of GaN-on-Diamond HEMT wafers. IEEE Electron Device Lett. 2016;37(5):621–624.
  • Anaya J, Bai T, Wang Y, et al. Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Mater. 2017;139:215–225.
  • Cheng Z, Bai T, Shi J, et al. Tunable thermal energy transport across diamond membranes and diamond-Si interfaces by nanoscale graphoepitaxy. ACS Appl Mater Interfaces. 2019;11(20):18517–18527.
  • Liu T, Kong Y, Wu L, et al. 3-inch GaN-on-Diamond HEMTs with device-first transfer technology. IEEE Electron Device Lett. 2017;38(10):1417–1420.
  • Cho J, Li Z, Bozorg-Grayeli E, et al. Improved thermal interfaces of GaN-Diamond composite substrates for HEMT applications. IEEE Trans Compon Packag Manuf Technol. 2013;3(1):79–85.
  • Chao P, Chu K, Creamer C, et al. Low-temperature bonded GaN-on-Diamond HEMTs with 11 W/mm output power at 10 GHz. IEEE Trans Electron Devices. 2015;62(11):3658–3664.
  • Zhou Y, Anaya J, Pomeroy J, et al. Barrier-layer optimization for enhanced GaN-on-Diamond device cooling. ACS Appl Mater Interfaces. 2017;9(39):34416–34422.
  • Hirama K, Taniyasu Y, Kasu M. AlGaN/GaN high-electron mobility transistor with low thermal resistance grown on single-crystal diamond (111) substrates by metalorgranic vapor-phase epitaxy. Appl Phys Lett 2011;98(16):162112.
  • Sun H, Simon R, Pomeroy J, et al. Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. Appl Phys Lett. 2015;106(11):111906.
  • Kuzmik J, Bychikhin S, Pogany D, et al. Thermal characteristics of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond. J Appl Phys. 2011;109(8):086106.
  • Siddique A, Ahmed R, Anderson J, et al. Structure and interface analysis of diamond on an AlGaN/GaN HEMT utilizing an in situ SiNx interlayer grown by MOCVD. ACS Appl Electron Mater. 2019;1(8):1387–1399.
  • Mandal S, Cuenca J, Massabuau F, et al. Thick, adherent diamond films on AlN with low thermal barrier resistance. ACS Appl Mater Interfaces. 2019;11(43):40826–40834.
  • Cheng Z, Mu F, Yates L, et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-Diamond devices. ACS Appl Mater Interfaces. 2020;12(7):8376–8384.
  • Kim J, Lee J, Kim J, et al. Challenging endeavor to integrate gallium and carbon via direct bonding to evolve GaN on diamond architecture. Scr Mater. 2018;142:138–142.
  • Wang K, Ruan K, Hu W, et al. Room temperature bonding of GaN on diamond wafers by using Mo/Au nano-layer for high-power semiconductor devices. Scr Mater. 2020;174:87–90.
  • Francis D, Faili F, Babic D, et al. Formation and characterization of 4-inch GaN-on-diamond substrate. Diam Relat Mater. 2010;19(2-3):229–233.
  • Liang J, Masuya S, Kasu M, et al. Realization of direct bonding of single crystal diamond and Si substrates. Appl Phys Lett. 2017;110(11):111603.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions. Appl Phys Lett. 2020;116(14):141602.
  • Liang J, Nakamura Y, Zhan T, et al. Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications. Diam Relat Mater. 2021;111:108207.
  • Liang J, Nakamura Y, Ohno Y, et al. Room temperature direct bonding of diamond and InGaP in atmospheric air. Funct Diam. 2021;1(1):110–116.
  • Liang J, Kobayashi A, Shimizu Y, et al. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design. Adv Mater. 2021;33(43):2104564.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Hydrophilic low-temperature direct bonding of diamond and Si substrates under atmospheric conditions. Scr. Mater. 2020;175:24–28.
  • Liang J, Ohno Y, Yamashita Y, et al. Characterization of nanoscopic Cu/diamond interfaces prepared by surface-activated bonding: implications for thermal management. ACS Appl Nano Mater. 2020;3(3):2455–2462.
  • Matsumae T, Kurashima Y, Umezawa H, et al. Hydrophilic direct bonding of diamond (111) substrate using treatment with H2SO4/H2O2. Jpn J Appl Phys. 2020;59(SB):SBBA01.
  • Ohno Y, Liang J, Shigekawa N, et al. Chemical bonding at room temperature via surface activation to fabricate low-resistance GaAs/Si heterointerfaces. Appl Surf Sci. 2020;525:146610.
  • Sun R, Yang X, Ohkubo Y, et al. Optimization of gas composition used in plasma chemical vaporization machining for figuring of reaction-sintered silicon carbide with low surface roughness. Sci Rep. 2018;8(1):2376.
  • Liang J, Masuya S, Kim S, et al. Stability of diamond/Si bonding interface during device fabrication process. Appl Phys Express. 2019;12(1):016501.
  • Michel K, Olivier T, Guy F, et al. Evolution and prevention of meltback etching: Case study of semipolar gan growth on patterned silicon substrates. J. Appl. Phys. 2017;122:105108.
  • Mu F, Cheng Z, Shi J, et al. High thermal boundary conductance across bonded heterogenous GaN-SiC interfaces. ACS Appl Mater Interfaces. 2019;(11):33428–33434.
  • Wang H, Xu Y, Shimono M, et al. Computation of interfacial thermal resistance by phonon diffuse mismatch model. Mater Trans. 2007;48(9):2349–2352. doi:10.2320/matertrans.MAW200717.