864
Views
0
CrossRef citations to date
0
Altmetric
Review

Research progress of spectra and properties of ultrahard carbon materials at high pressure and high temperature

, , , , , & show all
Pages 245-257 | Received 23 Nov 2022, Accepted 26 Dec 2022, Published online: 24 Jan 2023

References

  • Miracle DB. A structural model for metallic glasses. Nature Mater. 2004;3(10):697–702.
  • Sheng HW, Luo WK, Alamgir FM, et al. Atomic packing and short-to-medium-range order in metallic ­glasses. Nature. 2006;439(7075):419–425.
  • Hirata A, Guan P, Fujita T, et al. Direct observation of local atomic order in a metallic glass. Nature Mater. 2011;10(1):28–33.
  • Tang H, Yuan X, Cheng Y, et al. Synthesis of paracrystalline diamond. Nature. 2021;599(7886):605–610.
  • Zhang S, Li Z, Luo K, et al. Discovery of carbon-based strongest and hardest amorphous material. Natl Sci Rev. 2022;9(1):nwab140.
  • Lin Y, Zhang L, Mao HK, et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys Rev Lett. 2011;107(17):175504.
  • Zeng Z, Yang L, Zeng Q, et al. Synthesis of quenchable amorphous diamond. Nat Commun. 2017;8(1):322.
  • Sundqvist B. Carbon under pressure. Phys Rep. 2021;909:1–73.
  • Shang Y, Liu Z, Dong J, et al. Ultrahard bulk amorphous carbon from collapsed fullerene. Nature. 2021;599(7886):599–604.
  • Robertson J. Diamond-like amorphous carbon. Mater Sci Engin: R: Reports. 2002;37(4-6):129–281.
  • Bundy FP, Hall HT, Strong HM, et al. Man-made diamonds. Nature. 1955;176(4471):51–55.
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. J Chem Phys. 1963;38(3):631–643.
  • Bundy FP. Direct conversion of graphite to diamond in static pressure apparatus. Science. 1962;137(3535):1057–1058.
  • Naka S, Horii K, Takeda Y, et al. Direct conversion of graphite to diamond under static pressure. Nature. 1976;259(5538):38–39.
  • Irifune T, Kurio A, Sakamoto S, et al. Ultrahard polycrystalline diamond from graphite. Nature. 2003;421(6923):599–600.
  • Sumiya H, Irifune T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 2007;22(8):2345–2351.
  • Sumiya H, Irifune T, Kurio A, et al. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure. J Mater Sci. 2004;39(2):445–450.
  • Sumiya H, Irifune T. Indentation hardness of ­nano-polycrystalline diamond prepared from graphite by direct conversion. Diamond Relat Mater. 2004;13(10):1771–1776.
  • Sumiya H, Irifune T. Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds. SEI Technical Review-English Edition. 2008;66:85.
  • Harano K, Satoh T, Sumiya H, et al. Cutting performance of nano-polycrystalline diamond. SEI Tech Rev. 2010;71:98–103.
  • Sumiya H, Harano K. Distinctive mechanical properties of nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond Relat Mater. 2012;24:44–48.
  • Irifune T, Kurio A, Sakamoto S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Inter. 2004;143–144:593–600.
  • Robertson J. Properties of diamond-like carbon. Surf Coat Technol. 1992;50(3):185–203.
  • Sumiya H, Toda N, Satoh S. Growth rate of high-quality large diamond crystals. J Cryst Growth. 2002;237–239:1281–1285.
  • Wang H, Zhang X, Wang Y, et al. Synthesizing bulk polycrystalline diamond by method of direct phase transition. Diamond Abrasives Engin. 2018;38(1):1–6.
  • Tang H, Wang M, He D, et al. Synthesis of nano-polycrystalline diamond in proximity to industrial conditions. Carbon. 2016;108:1–6.
  • Xu C, He D, Wang H, et al. Nano-polycrystalline diamond formation under ultra-high pressure. Int J Refract Met Hard Mater. 2013;36:232–237.
  • Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Engin: R: Reports. 2004;44(2–3):45–89.
  • Lewandowski JJ, Greer AL. Temperature rise at shear bands in metallic glasses. Nature Mater. 2006;5(1):15–18.
  • Taguchi M, Yano A, Tohoda S, et al. 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovoltaics. 2014;4(1):96–99.
  • McMillan PF, Gryko J, Bull C, et al. Amorphous and nanocrystalline luminescent Si and Ge obtained via a solid-state chemical metathesis synthesis route. J Solid State Chem. 2005;178(3):937–949.
  • Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Stat Sol (b). 1966;15(2):627–637.
  • Bewilogua K, Hofmann D. History of diamond-like carbon films — from first experiments to worldwide applications. Surf Coat Technol. 2014;242:214–225.
  • Pu JC, Wang SF, Sung JC. High-temperature oxidation behaviors of CVD diamond films. Appl Surf Sci. 2009;256(3):668–673.
  • Mao WL, Mao H, Eng PJ, et al. Bonding changes in compressed superhard graphite. Science. 2003;302(5644):425–427.
  • Wang Z, Zhao Y, Tait K, et al. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proc Natl Acad Sci U S A. 2004;101(38):13699–13702.
  • Yoo CS, Nellis WJ. Phase transition from C60 molecules to strongly interacting C60 agglomerates at hydrostatic high pressures. Chem Phys Lett. 1992;198(3–4):379–382.
  • Blank VD, Buga SG, Dubitsky GA, et al. High-pressure polymerized phases of C60. Carbon. 1998;36(4):319–343.
  • Iwasa Y, Arima T, Fleming RM, et al. New phases of C60 synthesized at high pressure. Science. 1994;264(5165):1570–1572.
  • Blank VD, Buga SG, Serebryanaya NR, et al. Phase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fullerites. Phys Lett A. 1996;220(1–3):149–157.
  • Hirai H, Kondo K, Yoshizawa N, et al. Amorphous diamond from C60 fullerene. Appl Phys Lett. 1994;64(14):1797–1799.
  • Hirai H, Terauchi M, Tanaka M, et al. Band gap of essentially fourfold-coordinated amorphous diamond synthesized from C60 fullerene. Phys Rev B. 1999;60(9):6357–6361.
  • Bundy FP, Bassett WA, Weathers MS, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon. 1996;34(2):141–153.
  • Gioti M, Logothetidis S, Charitidis C. Stress relaxation and stability in thick amorphous carbon films deposited in layer structure. Appl Phys Lett. 1998;73(2):184–186.
  • Angus JC, Hayman CC. Low-pressure, metastable growth of diamond and “diamondlike” phases. Science. 1988;241(4868):913–921.
  • Liebermann RC. Multi-anvil, high pressure apparatus: a half-century of development and progress. High Pressure Res. 2011;31(4):493–532.
  • Kawai N, Endo S. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Rev Sci Instrum. 1970;41(8):1178–1181.
  • Kunimoto T, Irifune T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with ­nano-polycrystalline diamond anvils. J Phys: Conf Ser. 2010;215:012190.
  • Dubrovinsky L, Dubrovinskaia N, Bykova E, et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature. 2015;525(7568):226–229.
  • Peng F, He D. Development of domestic hinge-type cubic presses based on high pressure scientific research. Chinese J High Pressure Phys. 2018;32(1):010105.
  • Zhang L, Wang Y, Lv J, et al. Materials discovery at high pressures. Nat Rev Mater. 2017;2(4):1–16.
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510(7504):250–253.
  • Liu J, Zhan G, Wang Q, et al. Superstrong micro-grained polycrystalline diamond compact through work hardening under high pressure. Appl Phys Lett. 2018;112(6):061901.
  • Li Q, Zhan G, Li D, et al. Ultrastrong catalyst-free polycrystalline diamond. Sci Rep. 2020;10(1):1–10.
  • Zhang J, Zhan G, He D, et al. Transparent diamond ceramics from diamond powder. J Eur Ceram Soc. 2023;43(3):853–861.
  • Yip S. The strongest size. Nature. 1998;391(6667):532–533.
  • Pande CS, Cooper KP. Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54(6):689–706.
  • Naik SN, Walley SM. The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. J Mater Sci. 2020;55(7):2661–2681.
  • Dubrovinskaia N, Dubrovinsky L, Langenhorst F, et al. Nanocrystalline diamond synthesized from C60. Diamond Relat Mater. 2005;14(1):16–22.
  • Xu C, He D, Wang H, et al. Synthesis of nano-polycrystalline diamond under high pressure and high temperature. Superhard Mater Engin. 2011;23(4):9–12.
  • Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science. 2009;323(5914):607–610.
  • Solozhenko VL, Kurakevych OO, Le Godec Y. Creation of nanostuctures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv Mater. 2012;24(12):1540–1544.
  • Tian Y, Xu B, Yu D, et al. Ultrahard nanotwinned cubic boron nitride. Nature. 2013;493(7432):385–388.
  • Yue Y, Zhang Q, Yang Z, et al. Study of the mechanical behavior of radially grown fivefold twinned nanowires on the atomic scale. Small. 2016;12(26):3503–3509.
  • Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat Rev Mater. 2016;1(5):1–13.
  • Yue Y, Gao Y, Hu W, et al. Hierarchically structured diamond composite with exceptional toughness. Nature. 2020;582(7812):370–374.
  • Melinon P. Vitreous carbon, geometry and topology: a hollistic approach. Nanomaterials (Basel). 2021;11(7):1694.
  • Voyles PM, Zotov N, Nakhmanson SM, et al. Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J Appl Phys. 2001;90(9):4437–4451.
  • Treacy MM, Borisenko KB. The local structure of amorphous silicon. Science. 2012;335(6071):950–953.
  • Patterson AL. The Scherrer formula for X-Ray particle size determination. Phys Rev. 1939;56(10):978–982.
  • Prawer S, Nugent KW, Jamieson DN, et al. The Raman spectrum of nanocrystalline diamond. Chem Phys Lett. 2000;332(1-2):93–97.
  • Feng ZC, Mascarenhas AJ, Choyke WJ, et al. Raman scattering studies of chemical‐vapor‐deposited cubic SiC films of (100) Si. J Appl Phys. 1988;64(6):3176–3186.
  • Amer M, Barsoum MW, El-Raghy T, et al. The Raman spectrum of Ti3SiC2. J Appl Phys. 1998;84(10):5817–5819.
  • Qian J, Pantea C, Voronin G, et al. Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J Appl Phys. 2001;90(3):1632–1637.
  • Lohse BH, Calka A, Wexler D. Raman spectroscopy as a tool to study TiC formation during controlled ball milling. J Appl Phys. 2005;97(11):114912.
  • Voronin G. Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat Mater. 2003;12(9):1477–1481.
  • Ferrari AC, Robertson J. Origin of the1150-cm−1 Raman mode in nanocrystalline diamond. Phys Rev B. 2001;63(12):121405.
  • Pappas DL, Saenger KL, Bruley J, et al. Pulsed laser deposition of diamond‐like carbon films. J Appl Phys. 1992;71(11):5675–5684.
  • Fallon PJ, Veerasamy VS, Davis CA, et al. Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy. Phys Rev B. 1993;48(7):4777–4782.
  • Namba Y, Heidarpour E, Nakayama M. Size effects appearing in the Raman spectra of polycrystalline diamonds. J Appl Phys. 1992;72(5):1748–1751.
  • Irifune T, Isobe F, Shinmei T. A novel large-volume Kawai-type apparatus and its application to the synthesis of sintered bodies of nano-polycrystalline diamond. Phys Earth Planet Inter. 2014;228:255–261.
  • Chang YY, Jacobsen SD, Kimura M, et al. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods[J]. Phys Earth Planet Inter. 2014;228:47–55.
  • San-Miguel A. How to make macroscale non-crystalline diamonds. Nature 2021;599:563–564.