916
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Orientated growth the 3D diamond/graphene hybrid arrays and the application in thermal interface materials

, , , , , & show all
Pages 263-270 | Received 02 Dec 2022, Accepted 12 Jan 2023, Published online: 27 Jan 2023

References

  • Yan Q, Alam FE, Gao J, et al. Soft and self‐adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv Funct Mater. 2021;31(36):2104062.
  • Khan J, Momin SA, Mariatti M. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon. 2020;168:65–112.
  • Yu T-P, Lee Y-L, Li Y-W, et al. The study of cooling mechanism design for high-power communication module with experimental verification. Appl Sci. 2021;11(11):5188.
  • Ma H, Gao B, Wang M, et al. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review. J Mater Sci. 2021;56(2):1064–1086.
  • Chung DDL. Performance of thermal interface materials. Small. 2022;18(16):2200693.
  • Li M, Li L, Hou X, et al. Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials. Compos Sci Technol. 2021;212:108883.
  • Razeeb KM, Dalton E, Cross GLW, et al. Present and future thermal interface materials for electronic devices. Int Mater Rev. 2018;63(1):1–21.
  • Yu S, Liu S, Jiang X, et al. Recent advances on electrochemistry of diamond related materials. Carbon. 2022;200:517–542.
  • Jian Z, Xu J, Yang N, et al. A perspective on diamond composites and their electrochemical applications. Curr Opin Electrochem. 2021;30:1–9.
  • Zhao G, Yang N, Martínez-Huitle CA. Editorial overview: diamond electrochemistry current advances, challenges and opportunities in diamond electrochemistry. Curr Opin Electrochem. 2022;36:1–5.
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–907.
  • Guo X, Cheng S, Cai W, et al. A review of carbon-based thermal interface materials: mechanism, thermal measurements and thermal properties. Mater Des. 2021;209:109936.
  • Qiu L, Guo P, Kong Q, et al. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon. 2019;145:725–733.
  • Cao H, Tan Z, Lu M-H, et al. Graphene interlayer for enhanced interface thermal conductance in metal matrix composites: an approach beyond surface metallization and matrix alloying. Carbon. 2019;150:60–68.
  • Jiao Z, Li S, Zhou K, et al. Application of multi-scale pore regulation for high thermal conductivity foam reinforcements in energy storage. “Composites, Part A.”. 2022;157:106938.
  • Zhang W, Kong QQ, Tao Z, et al. 3d thermally cross‐linked graphene aerogel–enhanced silicone rubber elastomer as thermal interface material. Adv Mater Interfac. 2019;6(12):1900147.
  • Dai W, Ma T, Yan Q, et al. Metal-level thermally conductive yet soft graphene thermal interface materials. ACS Nano. 2019;13(10):11561–11571.
  • Yu H, Feng Y, Chen C, et al. Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface material. Carbon. 2021;179:348–357.
  • Cai Y, Yu H, Chen C, et al. Improved thermal conductivities of vertically aligned carbon nanotube arrays using three-dimensional carbon nanotube networks. Carbon. 2022;196:902–912.
  • Xu S, Wang S, Chen Z, et al. Electric‐field‐assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv Funct Mater. 2020;30(34):2003302.
  • Sahoo S, Sahoo G, Jeong SM, et al. A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. J Energy Storage. 2022;53:105212.
  • Xu S, Cheng T, Yan Q, et al. Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv Sci. 2022;1–9.
  • Tzeng Y, Yeh S, Fang WC, et al. Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films. Sci Rep. 2014;4(1):1–7.
  • Cho JM, Ko YJ, Lee HJ, et al. Bottom-up evolution of diamond-graphite hybrid two-dimensional nanostructure: underlying picture and electrochemical activity. Small. 2022;18(8):2105087.
  • Deshmukh S, Sankaran KJ, Srinivasu K, et al. Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties. Diamond Relat Mater. 2018;83:118–125.
  • Saravanan A, Huang BR, Yeh CJ, et al. Low temperature synthesis of diamond-based nano-carbon composite materials with high electron field emission properties. Appl Phys Lett. 2015;106(23):231602.
  • Rani R, Sankaran KJ, Panda K, et al. Tribofilm formation in ultrananocrystalline diamond film. Diamond Relat Mater. 2017;78:12–23.
  • Mertens M, Lin IN, Manoharan D, et al. Structural properties of highly conductive ultra-nanocrystalline diamond films grown by hot-filament cvd. AIP Adv. 2017;7(1):015312.
  • Sankaran KJ, Sundaravel B, Tai NH, et al. Improvement on electrical conductivity and electron field emission properties of au-ion implanted ultrananocrystalline diamond films by using au-si eutectic substrates. J Appl Phys. 2015;118(8):085306.
  • Tuinstra F, Koenig JL. Raman spectrum of graphite. J Chem Phys. 1970;53(3):1126–1130.
  • Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143(1-2):47–57.
  • Rabchinskii MK, Saveliev SD, Stolyarova DY, et al. Modulating nitrogen species via n-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon. 2021;182:593–604.
  • Tsai P-H, Tsai H-Y. Carbon nano-flake ball with a sandwich-structure composite of diamond core covered by graphite using single-step microwave plasma chemical vapor deposition. Carbon. 2018;136:1–10.
  • Sankaran KJ, Kurian J, Chen HC, et al. Origin of a ­needle-like granular structure for ultrananocrystalline diamond films grown in a n2/ch4plasma. J Phys D Appl Phys. 2012;45(36):365303.
  • Yuan G, Li Y, Long X, et al. Tuning anisotropic thermal conductivity of unidirectional carbon/carbon composites by incorporating carbonaceous fillers. J Mater Sci. 2020;55(12):5079–5098.
  • Lee J, Lee HI, Paik JG. Thermal conductivities of a needle-punched carbon/carbon composite with unbalanced structures. Carbon Lett. 2021;31(3):463–471.
  • Taylor R, Venkata Siva SB, Rama Sreekanth, PS. 5.14 Carbon matrix composites [M]. Comprehensive Composite Mater ii. 2018;339–378.
  • Ohayon-Lavi A, Buzaglo M, Ligati S, et al. Compression-enhanced thermal conductivity of carbon loaded polymer composites. Carbon. 2020;163:333–340.
  • Gómez J, Estrada A, Balbuena Ortega A, et al. Thermal conductivity of hybrid multilayer graphene-fiber carbon membranes. J Therm Anal Calorim. 2022;147(3):2115–2123.
  • Jang J-U, Lee SH, Kim J, et al. Nano-bridge effect on thermal conductivity of hybrid polymer composites incorporating 1d and 2d nanocarbon fillers. “Composites, Part B. ”. 2021;222:109072.
  • Zhang J, Shi G, Jiang C, et al. 3d bridged carbon nanoring/graphene hybrid paper as a high-performance lateral heat spreader. Small. 2015;11(46):6197–6204.
  • Song H, Liu J, Liu B, et al. Two-dimensional materials for thermal management applications. Joule. 2018;2(3):442–463.