512
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of nanodiamonds/polyaniline nanocomposite for bilirubin adsorption in hemoperfusion

, , , , ORCID Icon, & ORCID Icon show all
Article: 2300475 | Received 31 Oct 2023, Accepted 25 Dec 2023, Published online: 10 Feb 2024

References

  • Williams R, Schalm S, O’Grady J. Acute liver failure: redefining the syndromes. The Lancet. 1993;342(8866):1–8.
  • Vitek L, Ostrow J. Bilirubin chemistry and metabolism; harmful and protective aspects. CPD. 2009;15(25):2869–2883.
  • Shapiro SM. Bilirubin toxicity in the developing nervous system. Pediatr Neurol. 2003;29(5):410–421.
  • Falkenhagen D, Strobl W, Vogt G, et al. Fractionated plasma separation and adsorption system: a novel system for blood purification to remove albumin bound substances. Artif Organs. 1999;23(1):81–86.
  • Li M, Wang X, Gong G, et al. Engineered liver-inspired collagen matrix as a high-performance hemoperfusion adsorbent for bilirubin removal. Chem Eng J. 2021;426:130791.
  • Peng Z, Yang Y, Luo J, et al. Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. Biomater Sci. 2016;4(9):1392–1401.
  • Li Q, Zhao W, Guo H, et al. Metal–organic framework traps with record-high bilirubin removal capacity for hemoperfusion therapy. ACS Appl Mater Interfaces. 2020;12(23):25546–25556.
  • Müller BR. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon. Carbon. 2010;48(12):3607–3615.
  • Chen J, Ma Y, Wang L, et al. Preparation of chitosan/SiO2-loaded graphene composite beads for efficient removal of bilirubin. Carbon. 2019;143:352–361.
  • Sabzehmeidani MM, Mahnaee S, Ghaedi M, et al. A. Carbon based materials: a review of adsorbents for ­inorganic and organic compounds. Mater Adv. 2021;2(2):598–627.
  • Mochalin V, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012;7(1):11–23.
  • Feng Y, Zhao Q, Shi Y, et al. Recent applications of fluorescent nanodiamonds containing nitrogen-vacancy centers in biosensing. Funct Diam. 2022;2(1):192–203.
  • Mayerhoefer E, Krueger A. Surface control of nanodiamond: from homogeneous termination to complex functional architectures for biomedical applications. Acc Chem Res. 2022;55(24):3594–3604.
  • Wang H, Zhao Q, Zhang K, et al. Superhydrophobic nanodiamond-functionalized melamine sponge for oil/water separation. Langmuir. 2022;38(37):11304–11313.
  • Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Materials. 2012;22(5):890–906.
  • Beltz J, Pfaff A, Abdullahi IM, et al. Effect of nanodiamond surface chemistry on adsorption and release of tiopronin. Diamond Relat Mater. 2019;100:107590.
  • Lei Y, Huang Q, Gan D, et al. A novel one-step method for preparation of sulfonate functionalized nanodiamonds and their utilization for ultrafast removal of organic dyes with high efficiency: kinetic and isotherm studies. J Environ Chem Eng. 2020;8(3):103780.
  • Ahmadijokani F, Molavi H, Peyghambari A, et al. Efficient removal of heavy metal ions from aqueous media by unmodified and modified nanodiamonds. J Environ Manage. 2022;316:115214.
  • Schrand AM, Huang H, Carlson C, et al. Are diamond nanoparticles cytotoxic? J Phys Chem B. 2007;111(1):2–7.
  • Schrand AM, Dai L, Schlager JJ, et al. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Relat Mater. 2007;16(12):2118–2123.
  • Zhang X, Hu W, Li J, et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res. 2012;1(1):62–68.
  • Bonnett R, Davies JE, Hursthouse MB. Structure of bilirubin. Nature. 1976;262(5566):326–328.
  • Chen J, Song G, He Y, et al. Spectroscopic analysis of the interaction between bilirubin and bovine serum albumin. Microchim Acta. 2007;159(1–2):79–85.
  • Zhang K, Zhao Q, Qin S, et al. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J Colloid Interface Sci. 2019;537:316–324.
  • Bayramoğlu G, Yalçın E, Arıca MY. Characterization of polyethylenimine grafted and cibacron blue F3GA immobilized poly (hydroxyethylmethacrylate-co-glycydylmethacrylate) membranes and application to bilirubin removal from human serum. Colloids Surf A. 2005;264(1-3):195–202.
  • Wang J, Guo X. Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater. 2020;390:122156.
  • Plazinski W, Rudzinski W, Plazinska A. Theoretical models of sorption kinetics including a surface reaction mechanism: a review. Adv Colloid Interface Sci. 2009;152(1–2):2–13.
  • McCoy DE, Feo T, Harvey TA, et al. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat Commun. 2018;9(1):1.
  • Lima ÉC, Adebayo MA, Machado FM. Kinetic and equilibrium models of adsorption. Carbon nanomaterials as adsorbents for environmental and biological applications. 2015;33–69.
  • Liu Y, Liu YJ. Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol. 2008;61(3):229–242.
  • Liu Y, Xu H, Yang SF, et al. A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biotechnol. 2003;102(3):233–239.