919
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research Progress on Silicon Vacancy Color Centers in Diamond

, & ORCID Icon
Article: 2332346 | Received 30 Oct 2023, Accepted 13 Mar 2024, Published online: 23 Mar 2024

References

  • Aharonovich I, Castelletto S, Simpson DA, et al. Diamond-based single-photon emitters. Rep Prog Phys. 2011;74(7):1.
  • Sedov VS, Krivobok VS, Khomich AV, et al. Color centers in silic on-doped diamond films. J Appl Spectrosc. 2016;83(2):229–22.
  • Yang B, Yu B, Lu J, et al. Tailoring optical emission of silicon-vacancy centers in two-dimensional diamond nanosheets via a two-step oxidation approach. Func Diamond. 2023;3(1):2211074.
  • Liu K, Zhang S, Ralchenko V, et al. Tailoring of typical color centers in diamond for photonics. Adv Mater. 2021;33(6):e2000891.
  • Mei Y, Fan D, Lu S, et al. SiV center photoluminescence induced by C = O termination in nanocrystalline diamond and graphite loops hybridized films. J Appl Phys. 2016;120(22):225107.
  • Zhang H, Chen C, Mei Y, et al. Micron-sized diamond particles containing Ge-V and Si-V color centers. Chin Phys B. 2019;28(7):076103.
  • Mei YS, Chen CK, Fan D, et al. Enhanced SiV photoluminescence by oxidation-induced nano-structures on diamond particle surfaces. Nanoscale. 2019;11(2):656–662.
  • Hu X-J, Li N. Oxygen ion implantation enhanced ­silicon-vacancy photoluminescence and n-type conductivity of ultrananocrystalline diamond films. Chin Phys Lett. 2013;30(8):088102.
  • Chen C, Mei Y, Cui J, et al. Man-made synthesis of ultrafine photoluminescent nanodiamonds containing less than three silicon-vacancy colour centres. Carbon. 2018;139:982–988.
  • Mei YS, Chen CK, Jiang MY, et al. Photoluminescence of SiV centers in CVD diamond particles with specific crystallographic planes. Chin Phys B. 2019;28(1):016101.
  • Trojánek F, Hamráček K, Hanák M, et al. Light emission dynamics of silicon vacancy centers in a polycrystalline diamond thin film. Nanoscale. 2023;15(6):2734–2738.
  • Yu B, Yang B, Li H, et al. Effect of surface oxidation on photoluminescence of silicon vacancy color centers in the nanocrystalline diamond films. Appl Surf Sci. 2021;552:149475.
  • Liu W, Alam MNA, Liu Y, et al. Silicon-vacancy nanodiamonds as high performance near-infrared emitters for live-cell dual-color imaging and thermometry. Nano Lett. 2022;22(7):2881–2888.
  • Choi S, Leong V, Davydov VA, et al. Varying temperature and silicon content in nanodiamond growth: effects on silicon-vacancy centres. Sci Rep. 2018;8:3792.
  • Wang CL, Kurtsiefer C, Weinfurter H, et al. Single photon emission from SiV centres in diamond produced by ion implantation. J Phys B At Mol Opt Phys. 2006;39(1):37–41.
  • Marseglia L, Saha K, Ajoy A, et al. Bright nanowire single photon source based on SiV centers in diamond. Opt Express. 2018;26(1):80–89.
  • Piracha AH, Rath P, Ganesan K, et al. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett. 2016;16(5):3341–3347.
  • Li L, Chen EH, Zheng J, et al. Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 2015;15(3):1493–1497.
  • Schröder T, Trusheim ME, Walsh M, et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat Commun. 2017;8(1):1–7.
  • Ekimov EA, Kondrin MV. Vacancy–impurity centers in diamond: prospects for synthesis and applications. Phys-Usp. 2017;60(6):539–558.
  • Bradac C, Gao W, Forneris J, et al. Quantum nanophotonics with group IV defects in diamond. Nat Commun. 2019;10(1):5625.
  • Zeleneev AI, Bolshedvorskii SV, Soshenko VV, et al. Nanodiamonds with SiV colour centres for quantum technologies. Quantum Electron. 2020;50(3):299–304.
  • Rogers LJ, Jahnke KD, Metsch MH, et al. All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. Phys Rev Lett. 2014;113: 263602.
  • Benjamin Pingault JNB, Schulte CHH, Arend C, et al. All-optical formation of coherent dark states of ­silicon-vacancy spins in diamond. Phys Rev Lett. 2014;113:263601.
  • Gali A, Maze JR. Ab initio study of the split silicon-vacancy defect in diamond: electronic structure and related properties. Phys Rev B. 2013;88:235205.
  • Zhang T, Gupta M, Jing J, et al. High-quality diamond microparticles containing SiV centers grown by chemical vapor deposition with preselected seeds. J Mater Chem C. 2022;10(37):13734–13740.
  • Hepp C, Müller T, Waselowski V, et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett. 2014;112(3):036405.
  • Sipahigil A, Jahnke KD, Rogers LJ, et al. Indistin­guishable photons from separated silicon-vacancy centers in diamond. Phys Rev Lett. 2014;113(11):113602.
  • Müller T, Hepp C, Pingault B, et al. Optical signatures of silicon-vacancy spins in diamond. Nat Commun. 2014;5:3328.
  • Lagomarsino S, Flatae AM, Sciortino S, et al. Optical properties of silicon-vacancy color centers in diamond created by ion implantation and post-­annealing. Diamond Relat Mater. 2018;84:196–203.
  • Yang B, Yu B, Li HN, et al. Enhanced and switchable silicon-vacancy photoluminescence in air-annealed nanocrystalline diamond films. Carbon. 2020;156:242–252.
  • Rogers LJ, Jahnke KD, Teraji T, et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun. 2014;5(1):5.
  • Li J, Ren Z, Zhang J, et al. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Phys Sin. 2023;72(3):038102.
  • Rong Y, Ma J, Chen L, et al. Excited-state lifetime measurement of silicon vacancy centers in diamond by single-photon frequency upconversion. Laser Phys. 2018;28(5):055401.
  • Iwasaki T, Miyamoto Y, Taniguchi T, et al. Tin-vacancy quantum emitters in diamond. Phys Rev Lett. 2017;119:253601.
  • Tchernij SD, Herzig T, Forneris J, et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation. ACS Photonics. 2017;4(10):2580–2586.
  • Ditalia Tchernij S, Lühmann T, Herzig T, et al. Single-photon emitters in lead-implanted single-crystal diamond. ACS Photonics. 2018;5(12):4864–4871.
  • Bolshakov A, Ralchenko V, Sedov V, et al. Photo­luminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane. Phys Status Solidi A. 2015;212(11):2525–2532.
  • Yang B, Li H, Yu B, et al. Bright silicon vacancy centers in diamond/SiC composite films synthesized by a MPCVD method. Carbon. 2021;171:455–463.
  • Yao X, Feng Y, Hu Z, et al. Dimerization of boron dopant in diamond (100) epitaxy induced by strong pair correlation on the surface. J Phys Condens Matter. 2013;25:045011.
  • Stehlik S, Varga M, Stenclova P, et al. Ultrathin nanocrystalline diamond films with silicon vacancy color centers via seeding by 2 nm detonation nanodiamonds. ACS Appl Mater Interfaces. 2017;9(44):38842–38853.
  • Guo Y, Feng Y, Zhang L. Revealing the growth mechanism of SiV centers in chemical vapor deposition of diamond. Diamond Relat Mater. 2016;61:91–96.
  • Makino Y, Saito Y, Takehara H, et al. Effect of particle size on the optical properties of silicon‐vacancy centers in nanodiamonds fabricated by a detonation process. Phys Status Solidi A. 2022;219:2200342.
  • Makino Y, Mahiko T, Liu M, et al. Straightforward synthesis of silicon vacancy (SiV) center-containing single-digit nanometer nanodiamonds via detonation process. Diamond Relat Mater. 2021;112:108248.
  • Fujiwara M, Uchida G, Ohki I, et al. All-optical nanoscale thermometry based on silicon-vacancy centers in detonation nanodiamonds. Carbon. 2022;198:57–62.
  • Hunold L, Lagomarsino S, Flatae AM, et al. Scalable creation of deep silicon‐vacancy color centers in diamond by ion implantation through a 1‐μm pinhole. Adv Quantum Tech. 2021;4:2100079.
  • Takashima H, Fukuda A, Shimazaki K, et al. Creation of silicon vacancy color centers with a narrow emission line in nanodiamonds by ion implantation. Opt Mater Express. 2021;11(7):1978.
  • Li K, Zhou Y, Rasmita A, et al. Nonblinking emitters with nearly lifetime-limited linewidths in CVD nanodiamonds. Phys Rev Appl. 2016;6(2):7.
  • Jantzen U, Kurz AB, Rudnicki DS, et al. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New J Phys. 2016;18(7):073036.
  • Grudinkin SA, Feoktistov NA, Baranov MA, et al. Low-strain heteroepitaxial nanodiamonds: fabrication and photoluminescence of silicon-vacancy colour centres. Nanotechnology. 2016;27(39):395606.
  • Malykhin S, Mindarava Y, Ismagilov R, et al. Formation of GeV, SiV, and NV color centers in single crystal diamond needles grown by chemical vapor deposition. Phys Status Solidi B. 2019;256:1800721.
  • Zaghrioui M, Agafonov VN, Davydov VA. Nitrogen and group-IV (Si, Ge) vacancy color centres in nano-diamonds: photoluminescence study at high temperature (25 °C–600 °C). Mater Res Express. 2020;7(1):015043.
  • Pezzagna S, Rogalla D, Wildanger D, et al. Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks. New J Phys. 2011;13(3):035024.
  • Rong Y, Cheng K, Ju Z, Pan C, Ma Q, Liu S, Shen S, Wu B, Jia T, Wu E, Zeng H. Bright near-surface silicon vacancy centers in diamond fabricated by femtosecond laser ablation. Opt Lett.2019, 44(15): 3793–3796.
  • Jelezko F, Wrachtrup J. Single defect centres in diamond: a review. Phys Status Solidi A. 2006;203(13):3207–3225.
  • Grudinkin SA, Feoktistov NA, Medvedev AV, et al. Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. J Phys D Appl Phys. 2012;45(6):062001.
  • Singh S, Catledge SA. Silicon vacancy color center photoluminescence enhancement in nanodiamond particles by isolated substitutional nitrogen on {100} surfaces. J Appl Phys. 2013;113:044701.
  • Tzeng YK, Zhang JL, Lu H, et al. Vertical-Substrate MPCVD epitaxial nanodiamond growth. Nano Lett. 2017;17(3):1489–1495.
  • Neumann P, Kolesov R, Jacques V, et al. Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J Phys. 2009;11(1):013017.
  • Vass D, Szenes A, Bánhelyi B, et al. Superradiant diamond color center arrays coupled to concave plasmonic nanoresonators. Opt Express. 2019;27(22):31176–31192.
  • Lai S, Shen W, Zhang Z, et al. High-pressure high-temperature industrial preparation of micron-sized diamond single crystals with silicon-vacancy colour centres. Int J Refract Met Hard Mater. 2022;105:105806.
  • Yang B, Li J, Guo L, et al. Fabrication of silicon-­vacancy color centers in diamond films: tetramethylsilane as a new dopant source. CrystEngComm. 2018;20(8):1158–1167.
  • Sedov V, Ralchenko V, Khomich AA, et al. Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers. Diamond Relat Mater. 2015;56:23–28.
  • Mindarava Y, Blinder R, Laube C, et al. Efficient conversion of nitrogen to nitrogen-vacancy centers in diamond particles with high-temperature electron irradiation. Carbon. 2020;170:182–190.
  • Lu S, Fan D, Chen C, et al. Ground-state structure of oxidized diamond (100) surface: an electronically nearly surface-free reconstruction. Carbon. 2020;159:9–15.
  • Chen L, Chen C-K, Li X, et al. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Phys Sin. 2019;68(16):168101.
  • Krasnok AE, Maksymov IS, Denisyuk AI, et al. Optical nanoantennas. Phys-Usp. 2013;56(6):539–564.
  • Fehler KG, Ovvyan AP, Antoniuk L, et al. Purcell-enhanced emission from individual SiV − center in nanodiamonds coupled to a Si3N4-Based, photonic crystal cavity. Nanophotonics. 2020;9(11):3655–3662.
  • Selyukov AS, Danilkin MI, Eliseev SP, et al. Luminescence relaxation dynamics for planar and rolled-up CdSe nanocrystals in a photonic-crystal matrix. Quantum Electron. 2020;50(3):252–255.
  • Xinke L, Shengli M, Jikun X, et al. Dissipative generation of steady-state entanglement of two separated SiV centers coupled to photonic crystal cavities. Quantum Inf Process. 2020;19(9):301.
  • Benedikter J, Kaupp H, Hümmer T, et al. Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys Rev Appl. 2017;7:024031.
  • Lee J, Leong V, Kalashnikov D, et al. Integrated single photon emitters. AVS Quantum Sci. 2020;2:031701.
  • Li S, Francaviglia L, Kohler DD, et al. Ag-diamond core-shell nanostructures incorporated with silicon-vacancy centers. ACS Mater Au. 2022;2(2):85–93.
  • Lu J, Yang B, Yu B, et al. Fabrication of diamond nanoneedle arrays containing high‐brightness silicon‐vacancy centers. Adv Opt Mater. 2021:2101427).
  • Vass D, Szenes A, Bánhelyi B, et al. Plasmonically enhanced superradiance of broken-symmetry diamond color center arrays inside core-shell nanoresonators. Nanomaterials. 2022;12(3):352.
  • Romshin AM, Gritsienko AV, Lega PV, et al. Effectively enhancing silicon-vacancy emission in a hybrid diamond-in-pit microstructure. Laser Phys Lett. 2022;20(1):015206.
  • Fait J, Varga M, Hruška K, et al. Spectral tuning of diamond photonic crystal slabs by deposition of a thin layer with silicon vacancy centers. Nanophotonics. 2021;10(15):3895–3905.
  • Ondič L, Varga M, Fait J, et al. Photonic crystal cavity-­enhanced emission from silicon vacancy centers in polycrystalline diamond achieved without postfabrication fine-tuning. Nanoscale. 2020;12(24):13055–13063.
  • Riedrich-Möller J, Kipfstuhl L, Hepp C, et al. One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nature Nanotech. 2012;7(1):69–74.
  • Fehler KG, Antoniuk L, Lettner N, et al. Hybrid quantum photonics based on artificial atoms placed inside one hole of a photonic crystal cavity. ACS Photonics. 2021;8(9):2635–2641.
  • Lobaev MA, Gorbachev AM, Radishev DB, et al. Growth conditions and substrate misorientation angle dependences of silicon incorporation in chemical vapor deposition diamond. Phys Status Solidi A. 2023;220:2200654.
  • Shershulin VA, Sedov VS, Ermakova A, et al. Size-dependent luminescence of color centers in composite nanodiamonds. Phys Status Solidi A. 2015;212(11):2600–2605.
  • Bolshedvorskii SV, Zeleneev AI, Vorobyov VV, et al. Single silicon vacancy centers in 10 nm diamonds for quantum information applications. ACS Appl Nano Mater. 2019;2(8):4765–4772.
  • Orwa JO, Aharonovich I, Jelezko F, et al. Nickel related optical centres in diamond created by ion implantation. J Appl Phys. 2010;107:093512.
  • Lagomarsino S, Flatae AM, Kambalathmana H, et al. Creation of silicon-vacancy color centers in diamond by ion implantation. Front Phys. 2021;8:8.
  • Shiryaev AA, Hinks JA, Marks NA, et al. Ion implantation in nanodiamonds: size effect and energy dependence. Sci Rep. 2018;8:5099.
  • Yang C, Mi Z, Jin H, et al. Large-scale fabrication of surface SiV − centers in a flexible diamond membrane. Carbon. 2023;203:842–846.
  • Tamura S, Koike G, Komatsubara A, et al. Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation. Appl Phys Express. 2014;7(11):115201.
  • Berhane AM, Choi S, Kato H, et al. Electrical excitation of silicon-vacancy centers in single crystal diamond. Appl Phys Lett. 2015;106:171102.
  • Xu X, Martin ZO, Titze M, et al. Fabrication of single color centers in sub-50 nm nanodiamonds using ion implantation. Nanophotonics. 2023;12(3):485–494.
  • Tisler J, Balasubramanian G, Naydenov B, et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano. 2009;3(7):1959–1965.
  • Vlasov I, Shiryaev AA, Rendler T, et al. Molecular-sized fluorescent nanodiamonds. Nature Nanotech. 2014;9(1):54–58.
  • Wein S, Lauk N, Ghobadi R, et al. Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities. Phys Rev B. 2018;97:205418.
  • Bogdanov SI, Boltasseva A, Shalaev VM. Overcoming quantum decoherence with plasmonics. Science. 2019;364(6440):532–533.
  • Rose BH, Huang D, Zhang Zh, Stevenson P, et al. Observation of an environmentally insensitive solid-state spin defect in diamond. Science. 2018;361(6397):60–63.
  • Green BL, Mottishaw S, Breeze BG, et al. Neutral ­silicon-vacancy center in diamond: spin polarization and lifetimes. Phys Rev Lett. 2017;119:096402.
  • Bray K, Fedyanin DY, Khramtsov IA, et al. Electrical excitation and charge-state conversion of silicon vacancy color centers in single-crystal diamond membranes. Appl Phys Lett. 2020;116:101103.
  • Lobaev MA, Gorbachev AM, Radishev DB, et al. Investigation of silicon-vacancy center formation during the CVD diamond growth of thin and delta doped layers. J Mater Chem C. 2021;9(29):9229–9235.
  • Sukachev DD, Sipahigil A, Nguyen CT, et al. Silicon-vacancy spin qubit in diamond: a quantum memory exceeding 10 ms with single-shot state readout. Phys Rev Lett. 2017;119:223602.
  • Smallwood CL, Ulbricht R, Day MW, et al. Hidden ­silicon-vacancy centers in diamond. Phys Rev Lett. 2021;126:213601.
  • Dhomkar S, Zangara PR, Henshaw J, et al. On-demand generation of neutral and negatively charged ­silicon-vacancy centers in diamond. Phys Rev Lett. 2018;120:117401.
  • Sektarov E, Sedov V, Ralchenko V, et al. X‐rays in diamond photonics: a new way to control charge states of color centers. Phys Status Solidi A. 2023;220:2200283.
  • Guo X, Yang B, Lu J, et al. Electrical tailoring of the photoluminescence of silicon-vacancy centers in diamond/silicon heterojunctions. J Mater Chem C. 2022;10(24):9334–9343.
  • Lobaev MA, Radishev DB, Vikharev AL, et al. SiV centers electroluminescence in diamond merged diode. Phys Status Solidi Rapid Res Lett. 2023;17:2200432.
  • Liu K, Zhang S, Liu B, et al. Impact of positive space charge depletion layer on negatively charged and neutral centers in gold–diamond Schottky junctions. Carbon. 2019;153:381–388.