297
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The 4-inch free-standing diamond film prepared by MPCVD at 10kW

, , , , &
Article: 2356570 | Received 13 Nov 2023, Accepted 10 May 2024, Published online: 22 May 2024

References

  • Zhou CG, Qiu R, Ke JL, et al. Research on preparation technology of high quality diamond film. MSF. 2013;749:392–400.
  • Qi ZZ, Wei YT, Yu JJ, et al. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement. Appl Therm Eng. 2020;177:115489.
  • Wang WH, Dai B, Wang Y, et al. Recent progress of diamond optical window-related components. Mater Sci Technol. 2020;28(03):42–57.
  • Kumar A, Singh A, Kumar A, et al. Fabrication and characterization of polycrystalline diamond detectors for fast neutron monitoring. Nucl Instrum Methods Phys ResA. 2015;785:55–60.
  • Silva F, Achard J, Brinza O, et al. High quality, large surface area, homoepitaxial MPACVD diamond growth. Diamond Relat Mater. 2009;18:683–697.
  • Yao K, Dai B, Tan X, et al. Microwave plasma-assisted chemical vapor deposition of microcrystalline diamond films via graphite etching under different hydrogen flow rates. CrystEngComm. 2019;21(15):2502–2507.
  • Yan XS. Design and research of 20 kW/915 MHz microwave plasma device. Hefei: university of Science and Technology of China; 2022.
  • Gautama P, Toyota H, Iwamoto Y, et al. Synthesizing diamond film on Cu, Fe and Si substrate by in-liquid microwave plasma CVD. Precis Eng. 2017;49:412–420.
  • Ding MQ, Li LL, Feng JJ. A study of high-quality freestanding diamond films grown by MPCVD. Appl Surf Sci. 2012;258(16):5987–5991.
  • Weng J, Liu F, Xiong LW, et al. Deposition of large areauniform diamond films by microwave plasma CVD. Vacuum. 2018;147:134–142.
  • Zhou HY, Xu L, Ogino A, et al. Investigation into the antibacterial property of carbon films. Diamond Relat Mater. 2008;17(7-10):1416–1419.
  • Popovich AF, Ralchenko VG, Balla VK, et al. Growth of 4" diameter polycrystailine diamond wafers with high thermal conductivity by 915 MHz microwave plasma chemical vapor deposition. Plasma Sci Technol. 2017;19(3):035503.
  • Kobashi K, Nishibayashi Y, Yokota Y, et al. R&D of diamond films in the frontier carbon technology project and related topics. Diamond Relat Mater. 2003;12:233–240.
  • Li YF, Tang WZ, Jiang L, et al. Large area high quality diamond films deposition by 915 MHz high power MPCVD reactor. J Synth Cryst. 2019;48(07):1262–1267.
  • Li YF, An XM, Liu XC, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films. Diamond Relat Mater. 2017;78:67–72.
  • Weng JW, Xiong LW, Wang JH, et al. Investigation of depositing large area uniform diamond films in multi-mode MPCVD chamber. Diamond Relat Mater. 2012;30:15–19.
  • Vikharev AL, Gorbachev AM, Lobaev MA, et al. Multimode cavity type MPACVD reactor for large area diamond film deposition. Diamond Relat Mater. 2018;83:8–14.
  • An K, Zhang S, Shao S, et al. Effects of the electric field at the edge of a substrate to deposit a φ100 mm uniform diamond film in a 2.45 GHz MPCVD system. Plasma Sci Technol. 2022;(4):24:1–8.
  • Zhang S, An K, Yang Z, et al. 100 mm in diameter diamond films with high uniformity prepared by novel deposition mode in MPCVD system. Vacuum Cryog. 2022;28(05):549–555.
  • Xu S, Wu XL, Kang SH. Growth behavior of CVD polycrystalline diamond films on Si, Ti, Mo, Nb, ta substrate surfaces. Superhard Mater Eng. 2020;32(6):1–8.
  • Truscott BS, Kelly MW, Potter K J, et al. Microwave plasma-activated chemical vapor deposition of nitrogen-­doped diamond. II: CH4/N2/H2 plasmas. J Phys Chem A. 2016;120(43):8537–8549.
  • Ma J, Ashfold MNR, Mankelevich YA. Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition. J Appl Phys. 2009;105(4):1–12.
  • Li YC, Hao XB, Dai B, et al. Optimization design of MPCVD single crystal diamond growth based on plasma diagnostics. J Inorg Mater. 2023;38(12):1405–1412.
  • Wang CS, Chen HC, Shih WC, et al. Effect of H2/Ar plasma on growth behavior of ultra-nanocrystalline diamond films: the TEM study. Diamond Relat Mater. 2010;19:138–142.
  • Huang HW, Zhang TT, Ding KJ, et al. Optical emission spectroscopy analysis of diamond deposited by MPCVD. J Wuhan Instit Technol. 2017;39(1):39–44.
  • Lee ST, Lin Z, Jiang X. CVD diamond films: nucleation and growth. Mater Sci Eng. 1999;25:123–154.
  • Bushuev EV, Yurov VY, Bolsjakov AP, et al. Express in situ measurement of epitaxial CVD diamond film growth kinetics. Diamond Relat Mater. 2017;72:61–70.
  • Jia X, Huang N, Guo Y, et al. Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters. J Mater Sci Technol. 2018;34(12):2398–2406.
  • Chen GC, Li B, Lan H, et al. Gas phase study and oriented self-standing diamond film fabrication in high power DC arc plasma jet CVD. Diamond Relat Mater. 2007;16:477–480.
  • Li B. The influence of DC Arcjet plasma’s properties on deposited diamond. Beijing: University of Science and Technology Beijing; 2014.
  • Bolshakov AP, Ralchenko VG, Shu GY, et al. Single crystal diamond growth by MPCVD at subatmospheric pressures. Mater Today Commun. 2017;25:101635.
  • Cao W, Ma ZB. Optical spectroscopy for high-pressure microwave plasma chemical vapor deposition of diamond films. Guang Pu Xue Yu Guang Pu Fen Xi. 2015;35(11):3007–3011.
  • Ma ZB, Tao LP, Weng GF, et al. Spectroscopic analysis of microwave plasma for chemical vapor deposition diamond. J Wuhan Instit Technol. 2012;34(6):49–52.
  • Liao WH, Lin CR, Wei DH. Effect of CH4 concentration on the growth behavior, structure, and transparent properties of ultrananocrystalline diamond films synthesized by focused microwave Ar/CH4/H2 plasma jets. Appl Surf Sci. 2013;270:324–330.
  • Linnik SA, Gaydaychuk AV. Application of optical emission spectroscopy for the determination of optimal CVD diamond growth parameters in abnormal glow discharge plasma. Vacuum. 2014;103:28–32.
  • Mahoney EJD, Truscott BS, Mushtaq S, et al. Spatially resolved optical emission and modeling studies of ­microwave-activated hydrogen plasmas operating under conditions relevant for diamond chemical vapor deposition. J Phys Chem A. 2018;122(42):8286–8300.