200
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in diamond MOSFETs with normally off characteristics

, , , , , , & ORCID Icon show all
Article: 2357654 | Received 04 Apr 2024, Accepted 15 May 2024, Published online: 24 May 2024

References

  • Akimoto I, Handa Y, Fukai K, et al. High carrier mobility in ultrapure diamond measured by time-resolved cyclotron resonance. Appl Phys Lett. 2014;105(3):1.
  • Kawarada H. Hydrogen-terminated diamond surfaces and interfaces. Surf Sci Rep. 1996;26(7):205–12.
  • Donato N, Rouger N, Pernot J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective. J Phys D Appl Phys. 2019;53(9):093001.
  • Turner WJ, Fischler AS, Reese WE. Physical properties of several II–V semiconductors. J Phys Rev. 1961;121(3):759–767.
  • Higashiwaki M, Kaplar R, Pernot J, et al. Ultrawide bandgap semiconductors. Appl Phys Lett. 2021;118(20):200401.
  • Shimaoka T, Liao M, Koizumi S. n-Type diamond ­metal-semiconductor field-effect transistor with high operation temperature of 300 °C. IEEE Electron Device Lett. 2022;43(4):588–591.
  • Childress L, Hanson R. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 2013;38(2):134–138.
  • Lagrange J-P, Deneuville A, Gheeraert E. Activation energy in low compensated homoepitaxial boron-doped diamond films. Diamond Relat Mater. 1998;7(9):1390–1393.
  • Imanishi S, Horikawa K, Oi N, et al. 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett. 2019;40(2):279–282.
  • Yu X, Zhou J, Qi C, et al. A high frequency ­hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018;39(9):1373–1376.
  • Yu C, Zhou C, Guo J, et al. Hydrogen-terminated diamond MOSFETs on (001) single crystal diamond with state of the art high RF power density. Funct Diamond. 2022;2(1):64–70.
  • Kudara K, Imanishi S, Hiraiwa A, et al. High output power density of 2DHG diamond MOSFETs with thick ALD-Al2O3. IEEE Trans Electron Devices. 2021;68(8):3942–3949.
  • Zhou CJ, Wang JJ, Guo JC, et al. Radiofrequency performance of hydrogenated diamond MOSFETs with alumina. Appl Phys Lett. 2019;114(6):063501.
  • Liu JW, Liao MY, Imura M, et al. Control of normally on/off characteristics in hydrogenated diamond ­metal-insulator-semiconductor field-effect transistors. J Appl Phys. 2015;118(11):115704.
  • Zhu X, Shao S, Chan S, et al. High performance of normally‐on and normally‐off devices with highly boron‐doped source and drain on H‐terminated polycrystalline diamond. Adv Elect Mater. 2023;9(3):2201122.
  • Kazuyuki H, Hidenori T, Shintaro Y, et al. High-performance p-channel diamond MOSFETs with alumina gate insulator. 2007 IEEE International Electron Devices Metting; 2007. p. 873–876.
  • Kasu M, Sato H, Hirama K. Thermal stabilization of hole channel on H-terminated diamond surface by using atomic-layer-deposited Al2O3 overlayer and its electric properties. Appl Phys Express. 2012;5(2):025701.
  • Kawarada H. High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation. Jpn J Appl Phys. 2012;51(9R):090111.
  • Yu C, Zhou C, Guo J, et al. RF performance of hydrogenated single crystal diamond MOSFETs. 2019 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC); 2019.
  • Ren Z, Lv D, Xu J, et al. High temperature (300 °C) ALD grown Al2O3 on hydrogen terminated diamond: band offset and electrical properties of the MOSFETs. Appl Phys Lett. 2020;116(1):013503.
  • Wang Y-F, Wang W, Abbasi HN, et al. LiF/Al2O3 as dielectrics for MOSFET on single crystal hydrogen-terminated diamond. IEEE Electron Device Lett. 2020;41(6):808–811.
  • Hirama K, Sato H, Harada Y, et al. Diamond field-effect transistors with 1.3 a/mm drain current density by Al2O3 passivation layer. Jpn J Appl Phys. 2012;51(9R):090112.
  • Kawarada H. Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits. J Phys D Appl Phys. 2023;56(5):053001.
  • Kawai S, Yamano H, Sonoda T, et al. Nitrogen-terminated diamond surface for nanoscale NMR by shallow nitrogen-vacancy centers. J Phys Chem C. 2019;123(6):3594–3604.
  • Nebel CE, Ertl F, Sauerer C, et al. Low temperature properties of the p-type surface conductivity of diamond. Diamond Relat Mater. 2002;11(3–6):351–354.
  • Oing D, Geller M, Lorke A, et al. Tunable carrier density and high mobility of two-dimensional hole gases on diamond: the role of oxygen adsorption and surface roughness. Diamond Relat Mater. 2019;97:107450.
  • Sato H, Kasu M. Maximum hole concentration for ­hydrogen-terminated diamond surfaces with various surface orientations obtained by exposure to highly concentrated NO2. Diamond Relat Mater. 2013;31:47–49.
  • Tordjman M, Weinfeld K, Kalish R. Boosting surface charge-transfer doping efficiency and robustness of diamond with WO3 and ReO3. Appl Phys Lett. 2017;111(11):111601.
  • Kitabayashi Y, Kudo T, Tsuboi H, et al. Normally-off C–H diamond MOSFETs with partial C–O channel achieving 2-kV breakdown voltage. IEEE Electron Device Lett. 2017;38(3):363–366.
  • Oi N, Yabe T, Jorge SO, et al. Normally-off 2DHG diamond Al2O3/SiO2 MOSFETs without deteriorating drain current density. Extended Abstracts of the 2018 International Conference on Solid State Devices and Materials; 2018. p. 265–266.
  • Oi N, Kudo T, Inaba M, et al. Normally-off two-dimensional hole gas diamond MOSFETs through ­nitrogen-ion implantation. IEEE Electron Device Lett. 2019;40(6):933–936.
  • Grivickas P, Ščajev P, Kazuchits N, et al. Carrier recombination parameters in diamond after surface boron implantation and annealing. J Appl Phys. 2020;127(24):245707.
  • Itoh Y, Sumikawa Y, Umezawa H, et al. Trapping mechanism on oxygen-terminated diamond surfaces. Appl Phys Lett. 2006;89(20):203503.
  • Matsumoto T, Kato H, Oyama K, et al. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics. Sci Rep. 2016;6(1):31585.
  • Oi N, Inaba M, Okubo S, et al. Vertical-type two-­dimensional hole gas diamond metal oxide semiconductor field-effect transistors. Sci Rep. 2018;8(1):10660.
  • He S, Wang W, Chen G, et al. Small subthreshold swing diamond field effect transistors with SnO2 gate dielectric. IEEE Trans Electron Devices. 2022;69(8):4427–4431.
  • Liu JW, Liao MY, Imura M, et al. Normally-off HfO2-gated diamond field effect transistors. Appl Phys Lett. 2013;103(9):092905.
  • Liu J, Ohsato H, Liao M, et al. Logic circuits with hydrogenated diamond field-effect transistors. IEEE Electron Device Lett. 2017;38(7):922–925.
  • Liu JW, Oosato H, Liao MY, et al. Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y2O3 oxide insulator grown by electron beam evaporator. Appl Phys Lett. 2017;110(20):203502.
  • Zhang M, Wang W, Chen G, et al. Normally off ­hydrogen-terminated diamond field-effect transistor with Ti/TiOx gate materials. IEEE Trans Electron Devices. 2020;67(11):4784–4788.
  • Sasama Y, Taisuke K, Masataka I, et al. High-mobility p-channel wide bandgap transistors based on h-BN/diamond heterostructures. arxiv Preprint. 2021;2102,05982.
  • Cheng S, Sang L, Liao M, et al. Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices. Appl Phys Lett. 2012;101(23):232907.
  • Liu J, Liao M, Imura M, et al. Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric. Sci Rep. 2014;4(1):6395.
  • Liao M, Sang L, Shimaoka T, et al. Energy‐efficient ­metal–insulator–metal‐semiconductor field‐effect transistors based on 2D carrier gases. Adv Elect Mater. 2019;5(5):1088832.
  • Wang W, Wang Y, Zhang M, et al. An ­enhancement-mode hydrogen-terminated diamond field-effect transistor with lanthanum hexaboride gate material. IEEE Electron Device Lett. 2020;41(4):585–588.
  • Zhang M, Wang W, Chen G, et al. Electrical properties of yttrium gate hydrogen-terminated diamond field effect transistor with Al2O3 dielectric layer. Appl Phys Lett. 2021;118(5):053506.
  • He Q, Su K, Zhang J, et al. High mobility normally-off hydrogenated diamond field effect transistors with BaF2 gate insulator formed by electron beam evaporator. IEEE Trans Electron Devices. 2022;69(3):1206–1210.
  • Hua M, Chen J, Wang C, et al. E-mode p-GaN gate HEMT with p-FET bridge for higher VTH and enhanced VTH stability. 2020 IEEE International Electron Devices Meeting (IEDM); 2020.
  • Verona C, Arciprete F, Foffi M, et al. Influence of surface crystal-orientation on transfer doping of V2O5/H-terminated diamond. Appl Phys Lett. 2018;112(18):181602.
  • Daligou G, Pernot J. 2D hole gas mobility at diamond/insulator interface. Appl Phys Lett. 2020;116(16):162105.
  • Sasama Y, Taisuke K, Katsuyoshi K, et al. Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors. J Appl Phys. 2020;127(18):185707.
  • Cui A, Zhang J, Ren Z, et al. Microwave power performance analysis of hydrogen terminated diamond MOSFET. Diamond Relat Mater. 2021;118:108538.
  • Saha NC, Kim S-W, Oishi T, et al. 345-MW/cm2 2608-V NO2 p-type doped diamond MOSFETs with an Al2O3 passivation overlayer on heteroepitaxial diamond. IEEE Electron Device Lett. 2021;42(6):903–906.
  • Chen Z, Yu X, Zhou J, et al. Negative constant voltage stress-induced threshold voltage instability in hydrogen-terminated diamond MOSFETs with low-temperature deposited Al2O3. Appl Phys Lett. 2020;117(13):133501.
  • Hayashi K, Yamanaka S, Okushi H, et al. Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by hall measurements. Appl Phys Lett. 1996;68(3):376–378.
  • Geis MW, Hollis MA, Turner GW, et al. Controlling the carrier density of surface conductive diamond. Diamond Relat Mater. 2022;122:108775.
  • Schenk A, Tadich A, Sear M, et al. Formation of a silicon terminated (100) diamond surface. Appl Phys Lett. 2015;106(19):191603.
  • Schenk AK, Sear MJ, Dontschuk N, et al. Development of a silicon–diamond interface on (111) diamond. Appl Phys Lett. 2020;116(7):071602.
  • Sear MJ, Schenk AK, Tadich A, et al. Thermal stability and oxidation of group IV terminated (100) diamond surfaces. Phys Status Solidi A. 2018;215(22):1800283.
  • Schenk AK, Tadich A, Sear MJ, et al. The surface electronic structure of silicon terminated (100) diamond. Nanotechnology. 2016;27(27):275201.
  • Zhu X, Bi T, Yuan X, et al. C-Si interface on SiO2/(111) diamond p-MOSFETs with high mobility and excellent normally-off operation. Appl Surf Sci. 2022;593:153368.
  • Oslinker B, Hoxley D, Tadich A, et al. Surface transfer doping of oxidised silicon-terminated (111) diamond using MoO3. Diamond Relat Mater. 2023;133:109712.
  • Sear MJ, Schenk AK, Tadich A, et al. P-type surface transfer doping of oxidised silicon terminated (100) diamond. Appl Phys Lett. 2017;110(1):011605.
  • Fei W, Bi T, Iwataki M, et al. Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator. Appl Phys Lett. 2020;116(21):212103.
  • Bi T, Chang Y, Fei W, et al. C–Si bonded two-dimensional hole gas diamond MOSFET with normally-off operation and wide temperature range stability. Carbon. 2021;175:525–533.
  • Fu Y, Chang Y, Zhu X, et al. 300 mA/mm drain current density P-type enhancement-mode oxidized Si-terminated (111) diamond MOSFETs with ALD Al2O3Gate insulator. 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICs (ISPSD); 2022.
  • Fu Y, Chang Y, Zhu X, et al. Normally-off oxidized Si-terminated (111) diamond MOSFETs via ALD-Al2O3 gate insulator with drain current density over 300 mA/mm. IEEE Trans Electron Devices. 2022;69(8):4144–4152.
  • Fu Y, Chang Y, Kono S, et al. −10 V threshold voltage high-performance normally-off C–Si diamond MOSFET formed by p+-diamond-first and silicon molecular beam deposition approaches. IEEE Trans Electron Devices. 2022;69(5):2236–2242.
  • Fu Y, Kono S, Kawarada H, et al. Electrical characterization of metal/Al2O3/SiO2/Oxidized-Si-terminated (C–Si–O) diamond capacitors. IEEE Trans Electron Devices. 2022;69(7):3604–3610.
  • Roccaforte F, Fiorenza P, Vivona M, et al. Selective doping in silicon carbide power devices. Materials. 2021;14(14):3923.
  • Zheng Z, Zhang L, Song W, et al. Threshold voltage instability of enhancement-mode GaN buried p-channel MOSFETs. IEEE Electron Device Lett. 2021;42(11):1584–1587.
  • Zhang X, Matsumoto T, Yamasaki S, et al. Inversion-type p-channel diamond MOSFET issues. J Mater Res. 2021;36(23):4688–4702.
  • Yoshida R, Miyata D, Makino T, et al. Formation of atomically flat hydroxyl-terminated diamond (1 1 1) surfaces via water vapor annealing. Appl Surf Sci. 2018;458:222–225.
  • Zhang X, Matsumoto T, Nakano Y, et al. Inversion channel MOSFET on heteroepitaxially grown free-standing diamond. Carbon. 2021;175:615–619.
  • Zhang X, Matsumoto T, Sakurai U, et al. Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method. Carbon. 2020;168:659–664.
  • Zhang X, Matsumoto T, Sakurai U, et al. Insight into Al2O3/B-doped diamond interface states with high-temperature conductance method. Appl Phys Lett. 2020;117(9):092104.
  • Nagai M, Yoshida R, Yamada T, et al. Conductive-probe atomic force microscopy and kelvin-probe force microscopy characterization of OH-terminated diamond (111) surfaces with step-terrace structures. Jpn J Appl Phys. 2019;58(SI):SIIB08.
  • Pernot J, Volpe PN, Omnès F, et al. Hall hole mobility in boron-doped homoepitaxial diamond. Phys Rev B. 2010;81(20):205203.