0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Shear-promoted graphite-to-diamond phase transition at the grain boundary of nanocrystalline graphite

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2366807 | Received 09 May 2024, Accepted 06 Jun 2024, Published online: 17 Jun 2024

References

  • Sundqvist B. Carbon under pressure. Phys Rep. 2021;909:1–73. https://doi.org/10.1016/j.physrep.2020.12.007.
  • Fedosayev DV, Deryagin BV, Varasavskaja IG. The crystallization of diamond. Surf Coat. Technol. 1989;38(1–2):1–122. https://doi.org/10.1016/0257-8972(89)90127-8.
  • Mao WL, Mao H, Eng PJ, et al. Bonding changes in compressed superhard graphite. Science (80). 2003;302(5644):425–427. https://doi.org/10.1126/science.1089713.
  • Blank VD, Denisov VN, Kirichenko AN, et al. High pressure transformation of single-crystal graphite to form molecular carbon-onions. Nanotechnology. 2007;18(34):345601. https://doi.org/10.1088/0957-4484/18/34/345601.
  • Luo K, Liu B, Hu W, et al. Coherent interfaces govern direct transformation from graphite to diamond. Nature. 2022;607(7919):486–491. https://doi.org/10.1038/s41586-022-04863-2.
  • Bundy FP, Bassett WA, Weathers MS, et al. The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon NY. 1996;34(2):141–153. https://doi.org/10.1016/0008-6223(96)00170-4.
  • Guillou CL, Brunet F, Irifune T, et al. Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations. Carbon NY. 2007;45(3):636–648. https://doi.org/10.1016/j.carbon.2006.10.005.
  • Schindler TL, Vohra YK. A micro-Raman investigation of high-pressure quenched graphite. J Phys Condens Matter. 1995;7(47):L637–L642. https://doi.org/10.1088/0953-8984/7/47/001.
  • Dong J, Yao Z, Yao M, et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys Rev Lett. 2020;124(6):065701. https://doi.org/10.1103/PhysRevLett.124.065701.
  • Irifune T, Kurio A, Sakamoto S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature. Phys Earth Planet Int. 2004;143-144(1–2):593–600. https://doi.org/10.1016/j.pepi.2003.06.004.
  • Huang Q, Yu D, Xu B, et al. Nanotwinned diamond with unprecedented hardness and stability. Nature. 2014;510(7504):250–253. https://doi.org/10.1038/nature13381.
  • Bundy FP, Hall HT, Strong HM, et al. Man-made diamonds. Nature. 1955;176(4471):51–55. https://doi.org/10.1038/176051a0.
  • Fahy S, Louie SG, Cohen ML. Theoretical total-energy study of the transformation of graphite into hexagonal diamond. Phys Rev B. 1987;35(14):7623–7626. https://doi.org/10.1103/PhysRevB.35.7623.
  • Scandolo S, Bernasconi M, Chiarotti GL, et al. Pressure-induced transformation path of graphite to diamond. Phys Rev Lett. 1995;74(20):4015–4018. https://doi.org/10.1103/PhysRevLett.74.4015.
  • Khaliullin RZ, Eshet H, Kühne TD, et al. Nucleation mechanism for the direct graphite-to-diamond phase transition. Nat Mater. 2011;10(9):693–697. https://doi.org/10.1038/nmat3078.
  • Gao Y, Ma Y, An Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K. Carbon NY. 2019;146:364–368.
  • Sun XY, Fressengeas C, Taupin V, et al. Disconnections, dislocations and generalized disclinations in grain boundary ledges. Int J Plast. 2018;104:134–146. https://doi.org/10.1016/j.ijplas.2018.02.003.
  • Sun XY, Taupin V, Fressengeas C, et al. Continuous description of the atomic structure of grain boundaries using dislocation and generalized-disclination density fields. Int J Plast. 2016;77:75–89. https://doi.org/10.1016/j.ijplas.2015.10.003.
  • Feng H, Fang QH, Zhang LC, et al. Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials. Int J Plast. 2013;42:50–64. https://doi.org/10.1016/j.ijplas.2012.09.015.
  • Madhav Reddy K, Guo D, Lahkar S, et al. Graphite interface mediated grain-boundary sliding leads to enhanced mechanical properties of nanocrystalline silicon carbide. Materialia. 2019;7:100394. https://doi.org/10.1016/j.mtla.2019.100394.
  • Guo D, Song S, Luo R, et al. Grain boundary sliding and amorphization are responsible for the reverse hall-petch relation in superhard nanocrystalline boron carbide. Phys Rev Lett. 2018;121(14):145504. https://doi.org/10.1103/PhysRevLett.121.145504.
  • Ryou H, Drazin JW, Wahl KJ, et al. Below the hall–petch limit in nanocrystalline ceramics. ACS Nano. 2018;12(4):3083–3094. https://doi.org/10.1021/acsnano.7b07380.
  • Guo D, An Q. Transgranular amorphous shear band formation in polycrystalline boron carbide. Int J Plast. 2019;121:218–226. https://doi.org/10.1016/j.ijplas.2019.06.004.
  • Yano K. Mesomechanics of the α–ɛ transition in iron. Int J Plast. 2002;18(11):1427–1446. https://doi.org/10.1016/S0749-6419(02)00024-4.
  • Wulfinghoff S, Bayerschen E, Böhlke T. A gradient plasticity grain boundary yield theory. Int J Plast. 2013;51:33–46. https://doi.org/10.1016/j.ijplas.2013.07.001.
  • Li J. AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sci Eng. 2003;11(2):173–177. https://doi.org/10.1088/0965-0393/11/2/305.
  • Marks NA. Generalizing the environment-dependent interaction potential for carbon. Phys Rev B. 2000;63(3):035401. https://doi.org/10.1103/PhysRevB.63.035401.
  • Marks N. Modelling diamond-like carbon with the environment-dependent interaction potential. J Phys Condens Matter. 2002;14:2901–2927.
  • Thompson AP, Aktulga HM, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput Phys Commun. 2022;271:108171. https://doi.org/10.1016/j.cpc.2021.108171.
  • Justo JF, Bazant MZ, Kaxiras E, et al. Interatomic potential for silicon defects and disordered phases. Phys Rev B. 1998;58(5):2539–2550. https://doi.org/10.1103/PhysRevB.58.2539.
  • Lau DWM, McCulloch DG, Marks NA, et al. High-temperature formation of concentric fullerene-like structures within foam-like carbon: experiment and molecular dynamics simulation. Phys Rev B. 2007;75(23):233408. https://doi.org/10.1103/PhysRevB.75.233408.
  • Powles RC, Marks NA, Lau DWM. Self-assembly of Sp2-bonded carbon nanostructures from amorphous precursors. Phys Rev B. 2009;79(7):075430. https://doi.org/10.1103/PhysRevB.79.075430.
  • Suarez-Martinez I, Marks NA. Effect of microstructure on the thermal conductivity of disordered carbon. Appl Phys Lett. 2011;99(3):033101. https://doi.org/10.1063/1.3607872.
  • Suarez-Martinez I, Higginbottom PJ, Marks NA. Molecular dynamics simulations of the transformation of carbon peapods into double-walled carbon nanotubes. Carbon NY. 2010;48(12):3592–3598. https://doi.org/10.1016/j.carbon.2010.06.004.
  • Suarez-Martinez I, Marks NA. Amorphous carbon nanorods as a precursor for carbon nanotubes. Carbon NY. 2012;50(15):5441–5449. https://doi.org/10.1016/j.carbon.2012.07.030.
  • Marks NA, Lattemann M, McKenzie DR. Non­equilibrium route to nanodiamond with astrophysical implications. Phys Rev Lett. 2012;108(7):075503. https://doi.org/10.1103/PhysRevLett.108.075503.
  • de Tomas C, Suarez-Martinez I, Marks NA. Graphitization of amorphous carbons: a comparative study of interatomic potentials. Carbon NY. 2016;109:681–693. https://doi.org/10.1016/j.carbon.2016.08.024.
  • de Tomas C, Aghajamali A, Jones JL, et al. Transferability in interatomic potentials for carbon. Carbon NY. 2019;155:624–634. https://doi.org/10.1016/j.carbon.2019.07.074.
  • Maras E, Trushin O, Stukowski A, et al. Global transition path search for dislocation formation in Ge on Si(001). Comput Phys Commun. 2016;205:13–21. https://doi.org/10.1016/j.cpc.2016.04.001.
  • Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng. 2010;18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012.
  • Mochalin VN, Shenderova O, Ho D, et al. The properties and applications of nanodiamonds. Nat Nanotech. 2012;7(1):11–23. https://doi.org/10.1038/nnano.2011.209.
  • Schrand AM, Hens SAC, Shenderova OA. Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci. 2009;34(1–2):18–74. https://doi.org/10.1080/10408430902831987.