Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 8, 2022 - Issue 1
1,619
Views
1
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL CHEMISTRY, POLLUTION & WASTE MANAGEMENT

Surface interactions of oxytetracycline on municipal solid waste-derived biochar–montmorillonite composite

, , , & ORCID Icon | (Reviewing editor:)
Article: 2046324 | Received 16 Aug 2021, Accepted 05 Dec 2021, Published online: 17 Mar 2022

References

  • Aghababaei, A., Ncibi, M. C., & Sillanpää, M. (2017). Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues. Bioresource Technology, 239 , 28–36. https://doi.org/10.1016/j.biortech.2017.04.119
  • Almasri, D. A., Saleh, N. B., Atieh, M. A., McKay, G., & Ahzi, S. (2019). Adsorption of phosphate on iron oxide doped halloysite nanotubes. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-39035-2
  • Anastopoulos, I., Robalds, A., Tran, H. N., Mitrogiannis, D., Giannakoudakis, D. A., Hosseini-Bandegharaei, A., & Dotto, G. L. (2019). Removal of heavy metals by leaves-derived biosorbents. Environmental Chemistry Letters, 17(2), 755–766. https://doi.org/10.1007/s10311-018-00829-x
  • Aristilde, L., Lanson, B., Miéhé-Brendlé, J., Marichal, C., & Charlet, L. (2016). Enhanced interlayer trapping of a tetracycline antibiotic within montmorillonite layers in the presence of Ca and Mg. Journal of Colloid and Interface Science, 464, 153–159. https://doi.org/10.1016/j.jcis.2015.11.027
  • Ashiq, A., Sarkar, B., Adassooriya, N., Walpita, J., Rajapaksha, A. U., Ok, Y. S., & Vithanage, M. (2019). Sorption process of municipal solid waste biochar-montmorillonite composite for ciprofloxacin removal in aqueous media. Chemosphere, 236, 124384. https://doi.org/10.1016/j.chemosphere.2019.124384
  • Barbooti, M. M., Su, H., Punamiya, P., & Sarkar, D. (2014). Oxytetracycline sorption onto Iraqi montmorillonite. International Journal of Environmental Science and Technology, 11(1), 69–76. https://doi.org/10.1007/s13762-013-0361-6
  • Chang, P. H., Li, Z., Yu, T.-L., Munkhbayer, S., Kuo, T.-H., Hung, Y.-C., Jean, J.-S., & Lin, K.-H. (2009). Sorptive removal of tetracycline from water by palygorskite. Journal of Hazardous Materials, 165(1–3), 148–155. https://doi.org/10.1016/j.jhazmat.2008.09.113
  • Chen, H., Jing, L., Teng, Y., Wang, J. (2018). Multimedia fate modeling and risk assessment of antibiotics in a water-scarce megacity. Journal of Hazardous Materials, 348(August 2017), 75–83. https://doi.org/10.1016/j.jhazmat.2018.01.033
  • Choi, S., Sim, W., Jang, D., Yoon, Y., Ryu, J., Oh, J., Woo, J.-S., Kim, Y. M., & Lee, Y. (2020). Antibiotics in coastal aquaculture waters: Occurrence and elimination efficiency in oxidative water treatment processes. Journal of Hazardous Materials, 396(March), 122585. https://doi.org/10.1016/j.jhazmat.2020.122585
  • Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260. https://doi.org/10.1128/mmbr.65.2.232-260.2001
  • Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: A review. Environmental Chemistry Letters, 11(3), 209–227. https://doi.org/10.1007/s10311-013-0404-8
  • de S. Dos Santos, G. E., Lins, P. V. D. S., Oliveira, L. M. T. D. M., Silva, E. O. D., Anastopoulos, I., Erto, A., Giannakoudakis, D. A., Almeida, A. R. F. D., Duarte, J. L. D. S., & Meili, L. (2021). Layered double hydroxides/biochar composites as adsorbents for water remediation applications: Recent trends and perspectives. Journal of Cleaner Production, 284, 124755. https://doi.org/10.1016/j.jclepro.2020.124755
  • Dening, T. J., Joyce, P., Rao, S., Thomas, N., & Prestidge, C. A. (2016). Nanostructured montmorillonite clay for controlling the lipase-mediated digestion of medium chain triglycerides. ACS Applied Materials and Interfaces, 8(48), 32732–32742. https://doi.org/10.1021/acsami.6b13599
  • Ezzati, R. (2020). Derivation of pseudo-first-order, pseudo-second-order and modified pseudo-first-order rate equations from Langmuir and Freundlich isotherms for adsorption. Chemical Engineering Journal, 392(July), 123705. https://doi.org/10.1016/j.cej.2019.123705
  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
  • Ge, S., Foong, S. Y., Ma, N. L., Liew, R. K., Wan Mahari, W. A., Xia, C., Yek, P. N. Y., Peng, W., Nam, W. L., Lim, X. Y., Liew, C. M., Chong, C. C., Sonne, C., & Lam, S. S. (2020). Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products. Renewable and Sustainable Energy Reviews, 127(February), 109871. https://doi.org/10.1016/j.rser.2020.109871
  • Giannakoudakis, D. A., Barczak, M., Florent, M., & Bandosz, T. J. (2019). Analysis of interactions of mustard gas surrogate vapors with porous carbon textiles. Chemical Engineering Journal, 362, 758–766. https://doi.org/10.1016/j.cej.2019.01.064
  • Ho, Y.-S., & Ofomaja, A. E. (2006). Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochemical Engineering Journal, 30(2), 117–123. https://doi.org/10.1016/j.bej.2006.02.012
  • Jalil, M. E. R., Baschini, M., & Sapag, K. (2017). Removal of ciprofloxacin from aqueous solutions using pillared clays. Materials, 10(12), 17–19. https://doi.org/10.3390/ma10121345
  • Jayawardhana, Y., Gunatilake, S. R., Mahatantila, K., Ginige, M. P., & Vithanage, M. (2019). Sorptive removal of toluene and m-xylene by municipal solid waste biochar: Simultaneous municipal solid waste management and remediation of volatile organic compounds. Journal of Environmental Management, 238, 323–330. https://doi.org/10.1016/j.jenvman.2019.02.097
  • Jia, M., Wang, F., Bian, Y., Jin, X., song, Y., Kengara, F. O., Xu, R., & Jiang, X. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresource Technology, 136, 87–93. https://doi.org/10.1016/j.biortech.2013.02.098
  • Jiang, W. T., Wang, C. J., & Li, Z. (2013). Intercalation of ciprofloxacin accompanied by dehydration in rectorite. Applied Clay Science, 74, 74–80. https://doi.org/10.1016/j.clay.2012.07.009
  • Kulshrestha, P., Giese, R. F., & Aga, D. S. (2004). Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environmental Science and Technology, 38(15), 4097–4105. https://doi.org/10.1021/es034856q
  • Lian, F., Song, Z., Liu, Z., Zhu, L., & Xing, B. (2013). Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH. Environmental Pollution, 178, 264–270. https://doi.org/10.1016/j.envpol.2013.03.014
  • Liang, G., Wang, Z., Yang, X., Qin, T., Xie, X., Zhao, J., & Li, S. (2019). Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Science of the Total Environment, 695, 133800. https://doi.org/10.1016/j.scitotenv.2019.133800
  • Liu, Y., He, X., Fu, Y., & Dionysiou, D. D. (2016). Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. Journal of Hazardous Materials, 305, 229–239. https://doi.org/10.1016/j.jhazmat.2015.11.043
  • Liu, S., Liu, Y., Jiang, L., Zeng, G., Li, Y., Zeng, Z., Wang, X., & Ning, Q. (2019). Removal of 17β-Estradiol from water by adsorption onto montmorillonite-carbon hybrids derived from pyrolysis carbonization of carboxymethyl cellulose. Journal of Environmental Management, 236(January), 25–33. https://doi.org/10.1016/j.jenvman.2019.01.064
  • Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang, P., Li, J., Tsang, D. C. W., Bolan, N. S., Rinklebe, J., & Wang, H. (2018). Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresource Technology, 263, 385–392. https://doi.org/10.1016/j.biortech.2018.05.022
  • Martínez-Olivas, A., Torres-Pérez, J., Balderas-Hernández, P., Reyes-López, S. Y. (2020). Oxytetracycline sorption onto synthetized materials from hydroxyapatite and aluminosilicates. Water, Air, and Soil Pollution, 231(6), 1–21. https://doi.org/10.1007/s11270-020-04638-3
  • Massé, D. I., Saady, N. M. C., & Gilbert, Y. (2014). Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals, 4(2), 146–163. https://doi.org/10.3390/ani4020146
  • Peiris, C., Gunatilake, S. R., Mlsna, T. E., Mohan, D., & Vithanage, M. (2017). Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology, 246(May), 150–159. https://doi.org/10.1016/j.biortech.2017.07.150
  • Peiris, C., Nayanathara, O., Navarathna, C. M., Jayawardhana, Y., Nawalage, S., Burk, G., Karunanayake, A. G., Madduri, S. B., Vithanage, M., Kaumal, M., Mlsna, T. E., Hassan, E. B., Abeysundara, S., Ferez, F., & Gunatilake, S. R. (2019). The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: A comparative study. RSC Advances, 9(31), 17612–17622. https://doi.org/10.1039/c9ra02729g
  • Premarathna, K. S. D., Rajapaksha, A. U., Adassoriya, N., Sarkar, B., Sirimuthu, N. M. S., Cooray, A., Ok, Y. S., & Vithanage, M. (2019). Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. Journal of Environmental Management, 238, 315–322. https://doi.org/10.1016/j.jenvman.2019.02.069
  • Qiao, L., Liu, D., Yuan, X., Wang, Q., Ma, Q. (2020). Generation and prediction of construction and demolitionwaste using exponential smoothing method: A case study of Shandong Province, China. Sustainability (Switzerland), 12(12). https://doi.org/10.3390/su12125094
  • Rajapaksha, A. U., Chen, S. S., Tsang, D. C. W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N. S., & Ok, Y. S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148, 276–291. https://doi.org/10.1016/j.chemosphere.2016.01.043
  • Ramanayaka, S., Sarkar, B., Cooray, A. T., Ok, Y. S., & Vithanage, M. (2020). Halloysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media. Journal of Hazardous Materials, 384, 121301. https://doi.org/10.1016/j.jhazmat.2019.121301
  • Redlich, O. J. D. L., & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024–1024.
  • Rivera-Utrilla, J., Gómez-Pacheco, C. V., Sánchez-Polo, M., López-Peñalver, J. J., & Ocampo-Pérez, R. (2013). Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. Journal of Environmental Management, 131, 16–24. https://doi.org/10.1016/j.jenvman.2013.09.024
  • Saroyan, H. S., Bele, S., Giannakoudakis, D. A., Samanidou, V. F., Bandosz, T. J., & Deliyanni, E. A. (2019). Degradation of endocrine disruptor, bisphenol-A, on an mixed oxidation state manganese oxide/modified graphite oxide composite: A role of carbonaceous phase. Journal of Colloid and Interface Science, 539, 516–524. https://doi.org/10.1016/j.jcis.2018.12.088
  • Song, J., Zhang, S., Li, G., Du, Q., & Yang, F. (2020). Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal. Journal of Hazardous Materials, 391, 121692. https://doi.org/10.1016/j.jhazmat.2019.121692
  • Spagnoli, A. A., Giannakoudakis, D. A., & Bashkova, S. (2017). Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. Journal of Molecular Liquids, 229, 465–471. https://doi.org/10.1016/j.molliq.2016.12.106
  • Wathudura, P. D., Peiris, C., Navarathna, C. M., Mlsna, T. E., Kaumal, M. N., Vithanage, M., & Gunatilake, S. R. (2020). Microwave and open vessel digestion methods for biochar. Chemosphere, 239, 124788. https://doi.org/10.1016/j.chemosphere.2019.124788
  • Wijesekara, S. S. R. M. D. H. R., Mayakaduwa, S. S., Siriwardana, A. R., de Silva, N., Basnayake, B. F. A., Kawamoto, K., & Vithanage, M. (2014). Fate and transport of pollutants through a municipal solid waste landfill leachate in Sri Lanka. Environmental Earth Sciences, 72(5), 1707–1719. https://doi.org/10.1007/s12665-014-3075-2
  • Wu, Q., Li, Z., Hong, H., Yin, K., & Tie, L. (2010). Adsorption and intercalation of ciprofloxacin on montmorillonite. Applied Clay Science, 50(2), 204–211. https://doi.org/10.1016/j.clay.2010.08.001
  • Yan, W., Guo, Y., Xiao, Y., Wang, S., Ding, R., Jiang, J., Gang, H., Wang, H., Yang, J., & Zhao, F. (2018). The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing. Water Research, 142, 105–114. https://doi.org/10.1016/j.watres.2018.05.047
  • Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A. E., Sun, Y., & Yang, L. (2014). Characterization and environmental applications of clay-biochar composites. Chemical Engineering Journal, 242, 136–143. https://doi.org/10.1016/j.cej.2013.12.062
  • Yuan, L., Yan, M., Huang, Z., He, K., Zeng, G., Chen, A., Hu, L., Li, H., Peng, M., Huang, T., & Chen, G. (2019). Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. Journal of Colloid and Interface Science, 541, 101–113. https://doi.org/10.1016/j.jcis.2019.01.078
  • Zhang, Y., Chen, H., Jing, L., & Teng, Y. (2020). Ecotoxicological risk assessment and source apportionment of antibiotics in the waters and sediments of a peri-urban river. Science of the Total Environment, 731, 139128. https://doi.org/10.1016/j.scitotenv.2020.139128
  • Zhang, M., Meng, J., Liu, Q., Gu, S., Zhao, L., Dong, M., Zhang, J., Hou, H., & Guo, Z. (2019). Corn stover-derived biochar for efficient adsorption of oxytetracycline from wastewater. Journal of Materials Research, 34(17), 3050–3060. https://doi.org/10.1557/jmr.2019.198
  • Zhou, Y., Liu, X., Xiang, Y., Wang, P., Zhang, J., Zhang, F., Wei, J., Luo, L., Lei, M., & Tang, L. (2017). Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresource Technology, 245(July 2018), 266–273. https://doi.org/10.1016/j.biortech.2017.08.178
  • Zupanc, M., Kosjek, T., Petkovšek, M., Dular, M., Kompare, B., Širok, B., Blažeka, Ž., & Heath, E. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics Sonochemistry, 20(4), 1104–1112. https://doi.org/10.1016/j.ultsonch.2012.12.003
  • Zupanc, M., Kosjek, T., Petkovšek, M., Dular, M., Kompare, B., Širok, B., and Heath, E. (2013). Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment. Ultrasonics sonochemistry, 20(4), 1104–1112.