Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 8, 2022 - Issue 1
950
Views
0
CrossRef citations to date
0
Altmetric
WASTE MANAGEMENT

Oilfield wastewater contaminants removal efficiencies of three indigenous plants species in a free water surface flow constructed wetland

ORCID Icon, , ORCID Icon &
Article: 2076361 | Received 20 Oct 2021, Accepted 09 May 2022, Published online: 20 May 2022

References

  • Abbasi, T., & Abbasi, S. A. (2010). Factors which facilitate waste water treatment by aquatic weeds–the mechanism of the weeds’ purifying action. International Journal of Environmental Studies, 67(3), 349–10. https://doi.org/10.1080/00207230902978380
  • Abbasi, S. A., Tabassum-Abbasi, P. G., & Tauseef, S. M. (2019). Potential of joyweed Alternanthera sessilis for rapid treatment of domestic sewage in SHEFROL® bioreactor. International Journal of Phytoremediation, 21(2), 160–169. https://doi.org/10.1080/15226514.2018.1488814
  • Alufasi, R., Gere, J., Chakauya, E., Lebea, P., Parawira, W., & Chingwaru, W. (2017). Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environmental Technology Reviews, 6(1), 135–144. https://doi.org/10.1080/21622515.2017.1325940
  • Andries, R. G., Matos, A. T. D., & Freitas, W. D. S. (2018). Estimation of plant productivity and nutrient extraction capacity along the length of horizontal subsurface flow constructed wetland treating swine wastewater. Revista Ambiente & Água, 13(3). http://www.scielo.br/scielo.php?pid=S1980-993X2018000300301&script=sci_arttext
  • Arthur, J. D., Langhus, B. G., & Patel, C. (2005). Technical summary of oil & gas produced water treatment technologies. All Consulting.
  • Ayaz, S. Ç., Aktaş, Ö., Findik, N., & Akça, L. (2012). Phosphorus removal and effect of adsorbent type in a constructed wetland system. Desalination and Water Treatment, 37(1–3), 152–159. https://doi.org/10.1080/19443994.2012.661267
  • Babatunde, A. O., Zhao, Y. Q., O’neill, M., & O’sullivan, B. (2008). Constructed wetlands for environmental pollution control: A review of developments, research and practice in Ireland. Environment International, 34(1), 116–126. https://doi.org/10.1016/j.envint.2007.06.013
  • Ballantine, D. J., & Tanner, C. C. (2010). Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: A review. New Zealand Journal of Agricultural Research, 53(1), 71–95. https://doi.org/10.1080/00288231003685843
  • Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5), 11–17.
  • Brix, H. (2003). Plants used in constructed wetlands and their functions. 1st International Seminar on the Use of Aquatic Macrophytes for Wastewater Treatment in Constructed Wetlands, Edit. Dias V., Vymazal J. Lisboa, Portugal, Hydrobiologia (2011) 674, 133–156. https://doi.org/10.1007/s10750-011-0738-9
  • Calheiros, C. S., Rangel, A. O., & Castro, P. M. (2007). Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Research, 41(8), 1790–1798. https://doi.org/10.1016/j.watres.2007.01.012
  • Cooper, P. F., & Findlater, B. C. (1999). In A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Science and Technology, 40(3), 1-9.
  • Cooper, P. F. (2005). The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Science and Technology, 51(9), 81–90. https://doi.org/10.2166/wst.2005.0293
  • Corcoran, E. (Ed.). (2010). Sick water?: The central role of wastewater management in sustainable development: A rapid response assessment. UNEP/Earthprint. http://purl.unep.org/sdg/SDGIO_00000048
  • Crites, R. W., Middlebrooks, E. J., & Reed, S. C. (2005). Natural wastewater treatment systems. CRC Press.
  • El Berkaoui, M., El Adnani, M., Hakkou, R., Ouhammou, A., Bendaou, N., & Smouni, A. (2022). Assessment of the transfer of trace metals to spontaneous plants on abandoned pyrrhotite mine. Potential Application for Phytostabilization of Phosphate Wastes. Plants, 11(2), 179. https://doi.org/10.3390/min12030334
  • El Sergany, R., El Fadly, M., & El Nadi, A. (2014). Brine desalination by using algae ponds under nature conditions. American Journal of Environmental Engineering, 4(4), 75–79. https://doi.org/10.5923/j.ajee.20140404.02
  • Ezcurra, C., & Daniel, T. F. (2007). Ruellia simplex, an older and overlooked name for ruellia tweediana and ruellia coerulea (Acanthaceae). Darwiniana, 45, 201–203. ID: 83647548.
  • Fan, X., Du, Y., Luo, B., Han, W., Niu, S., Gu, W., & Ge, Y. (2021). Increasing plant diversity to mitigate net greenhouse effect of wastewater treatment in floating constructed wetlands. Journal of Cleaner Production, 314,127955. https://doi.org/10.1016/j.jclepro.2021.127955
  • Freyre, R., & Tripp, E. (2014). Artificial hybridization between US native Ruellia caroliniensis and invasive Ruellia simplex: Crossability, morphological diagnosis, and molecular characterization. Hort Science, 49(8), 991–996. https://doi.org/10.21273/HORTSCI.49.8.991
  • Gabr, M. E. (2022). Design methodology for sewage water treatment system comprised of Imhoff‘s tank and a subsurface horizontal flow constructed wetland: A case study Dakhla Oasis, Egypt. Journal of Environmental Science and Health, Part A, 57(1), 52-64. https://doi.org/10.1080/10934529.2022.2026735
  • García, M., Soto, F., González, J. M., & Bécares, E. (2008). A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecological Engineering, 32(3), 238–243. https://doi.org/10.1016/j.ecoleng.2007.11.012
  • Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049
  • Kadlec, R. H. (2000). The inadequacy of first-order treatment wetland models. Ecological Engineering, 15(1–2), 105–119.
  • Kadlec, R. H., & Wallace, S. (2008). Treatment Wetlands (2nd ed). CRC Press.
  • Kadlec, R. H. (2009). Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering, 35(2), 159–174. https://doi.org/10.1016/j.ecoleng.2008.04.008
  • Kataki, S., Chatterjee, S., Vairale, M. G., Sharma, S., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable and Sustainable Energy Reviews, 148, 111261. https://doi.org/10.1016/j.rser.2021.111261
  • Kinnear, S. H. W., Fabbro, L. D., & Duivenvoorden, L. J. (2008). Variable growth responses of water thyme (Hydrilla verticillata) to whole-cell extracts of Cylindrospermopsis raciborskii. Archives of Environmental Contamination and Toxicology, 54(2), 187–194. https://doi.org/10.1007/s00244-007-9026-0
  • Koyro, H. W., Geissler, N., Hussin, S., Debez, A., & Huchzermeyer, B. (2008). Strategies of halophytes to survive in a salty environment. Abiotic stress and plant responses. IK International Publishing House.
  • Lagos, L., Maruyama, F., Nannipieri, P., Mora, M. L., Ogram, A., & Jorquera, M. A. (2015). Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: A mini‒review. Journal of Soil Science and Plant Nutrition, 15(2), 504–523. https://doi.org/10.4236/nr.2015.64026
  • Langeland, K. A., Cherry, H. M., McCormick, C. M., & Burks, K. C. (2008). Identification and biology of nonnative plants in Florida’s natural areas. Univ. Florida, Inst. Food Agr. Sci. Commun. Serv. Gainesville, FL.
  • LaRiviere, D., Autenreith, R. L., & Bonner, J. (2002). Oxidation of rhizosphere sediments by Alternanthera philoxeroides: Roots to quicker petroleum degradation? In Arctic And Marine Oilspill Program Technical Seminar, Vol. 1 (pp. 341–354).
  • Licata, M., Gennaro, M. C., Tuttolomondo, T., Leto, C., & La Bella, S. (2019). Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater–A set of experimental studies in Sicily (Italy). PloS one, 14(7), e0219445. https://doi.org/10.1371/journal.pone.0219445
  • Mekonnen, A., Leta, S., & Njau, K. N. (2014). Wastewater treatment performance efficiency of constructed wetlands in African countries: A review. Water Science and Technology, 71(1), 1–8. https://doi.org/10.2166/wst.2014.483
  • Norton, S. (2014, Removal mechanisms in constructed wastewater wetlands. eng. iastate. edu/~, http://home.eng.iastate.edu/~tge/ce421-521/stephen. pdf
  • Oduro, E. (2015). Perceived effect of the integrated coastal fisheries governance programme on food security status of fishing households in shama district in the Western Region of Ghana (Doctoral dissertation, University of Cape Coast).
  • Rodriguez-Dominguez, M. A., Bonefeld, B. E., Ambye-Jensen, M., Brix, H., & Arias, C. A. (2022). The use of treatment wetlands plants for protein and cellulose valorization in biorefinery platform. Science of the Total Environment, 810, 152376. https://doi.org/10.1016/j.scitotenv.2021.152376
  • Saeed, T., & Sun, G. (2012). A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, 429–448. https://doi.org/10.1016/j.jenvman.2012.08.011
  • Sample, D., Wang, C. Y., & Fox, L. (2013). Innovative Best Management Fact Sheet. 1. Floating Treatment Wetlands.
  • Saravanan, S., Nethala, S., Pattnaik, S., Tripathi, A., Moorthi, A., & Selvamurugan, N. (2011). Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules, 49(2), 188–193. https://doi.org/10.1016/j.ijbiomac.2011.04.010
  • Scholz, M., & Lee, B. H. (2005). Constructed wetlands: A review. International Journal of Environmental Studies, 62(4), 421–447. https://doi.org/10.1080/00207230500119783
  • Sedlak, R. (2018). Phosphorus and nitrogen removal from municipal wastewater: Principles and practice. Routledge.
  • Sekyi, R. (2011). AKOBEN: Ghana’s new initiative for environmental performance rating and disclosure in the mining sector. In Proceedings Tailings and Mine Waste (pp. 1–20).
  • Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22(1), 27–42. https://doi.org/10.1016/j.ecoleng.2004.01.004
  • Srivastava, J., Gupta, A., & Chandra, H. (2008). Managing water quality with aquatic macrophytes. Reviews in Environmental Science and Bio/Technology, 7(3), 255–266. https://doi.org/10.1007/s11157-008-9135-x
  • Verhoeven, J. T., & Meuleman, A. F. (1999). Wetlands for wastewater treatment: Opportunities and limitations. Ecological Engineering, 12(1–2), 5–12. https://doi.org/10.1016/S0925-8574(98)00050-0
  • Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70–89. https://doi.org/10.1016/j.ecoleng.2009.08.003
  • Vymazal, J., Brix, H., Cooper, P. F., Green, M. B., & Haberl, R. (Eds.). (1998). Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers.
  • Vymazal, J. (2005). Constructed wetlands for wastewater treatment. Ecological Engineering, 25(5), 475–477. https://doi.org/10.1016/j.ecoleng.2005.07.002
  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), 48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014
  • Vymazal, J. (2011). Constructed wetlands for wastewater treatment: Five decades of experience. Environmental Science and Technology, 45(1), 65–69. https://doi.org/10.1021/es101403q
  • Vymazal, J., Zhao, Y., & Mander, Ü. (2021). Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 169(13), 106318. https://doi.org/10.1016/j.ecoleng.2021.106318
  • Wagner, W. L., Herbst, D. R., & Sohmer, S. H. (1999). Manual of the flowering plants of Hawaiʻi. University of HawaiʻiPress.
  • Wang, Q., & Li, Y. (2010). Phosphorus adsorption and desorption behavior on sediments of different origins. Journal of Soils and Sediments, 10(6), 1159–1173. https://doi.org/10.1007/s11368-010-0211-9
  • Weber, K. P., & Legge, R. L. (2008). Pathogen removal in constructed wetlands. In Wetlands: ecology, conservation and restoration, chapter 5 (pp. 176–211). Nova Science Publishers, Inc.
  • Wild, U., Kamp, T., Lenz, A., Heinz, S., & Pfadenhauer, J. (2001). Cultivation of Typha spp. in constructed wetlands for peatland restoration. Ecological Engineering, 17(1), 49–54. https://doi.org/10.1016/S0925-8574(00)00133-6
  • Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology, 175, 594–601. https://doi.org/10.1016/j.biortech.2014.10.068
  • Yadav, M., Gupta, R., & Sharma, R. K. (2019). Green and sustainable pathways for wastewater purification. In Advances in water purification techniques (pp. 355–383). Elsevier.
  • Yang, Q., Chen, Z. H., Zhao, J. G., & Gu, B. H. (2007). Contaminant removal of domestic wastewater by constructed wetlands: Effects of plant species. Journal of Integrative Plant Biology, 49(4), 437–446. https://doi.org/10.1111/j.1744-7909.2007.00389.x
  • Yang, J., Qi, Y., Li, H., & Xu, G. (2018). Comparison of nitrogen and phosphorus purification effects of different wetland plants on eutrophic water. In IOP Conference Series: Earth and Environmental Science, 113( 1), 012042. IOP Publishing.