Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 10, 2024 - Issue 1
0
Views
0
CrossRef citations to date
0
Altmetric
Environmental Resource Management

Growth prediction models and dynamics of three fodder crops under fresh and brackish water irrigation in dry-land regions

, , , , , & show all
Article: 2379145 | Received 15 Mar 2024, Accepted 08 Jul 2024, Published online: 19 Jul 2024

References

  • Acharya, B. R., Sandhu, D., DueñDueñAs, C., Ferreira, J. F., & Grover, K. K. (2022). Deciphering molecular mechanisms involved in salinity tolerance in guar (cyamopsis tetragonoloba (l.) taub.) using transcriptome analyses. Plants, 11(3), 291. https://doi.org/10.3390/plants11030291
  • Ahmad, A. Y., Qaiser, J. A. V. E. D., Deke, X. I. N. G., Ikram, U. L. L. A. H., Francis, K. U. M. I., & Kumi, F. (2017). Response of okra based on electrophysiological modeling under salt stress and re-watering. Growth, 1, 1219–18. https://doi.org/10.14393/BJ-v33n5a2017-37178
  • Al-Tamimi, N., Oakey, H., Tester, M., & Negrão, S. (2021). Assessing rice salinity tolerance: From phenomics to association mapping. In A. Bandyopadhyay & R. Thilmony (Eds.), Rice genome engineering and gene editing. Methods in molecular biology (Vol. 2238). Humana. https://doi.org/10.1007/978-1-0716-1068-8_23
  • Amanullah, K. S., Imran, K. H., Arif, M., Altawaha, A. R., Adnan, M., Fahad, S., Shah, A., & Parmar, B. (2020). Effects of climate change on irrigation water quality. In H. Ullah, I. A. Khan, M. Hasanuzzaman, M. Adnan, M. Saeed, M. Alam, & S. Fahad (Eds.), Environment, Climate, Plant and Vegetation Growth (pp. 123–132). Springer. https://doi.org/10.1007/978-3-030-49732-3_6
  • Azeem, A., Wu, Y., Javed, Q., Xing, D., Ullah, I., & Kumi, F. (2017). Response of okra based on electrophysiological modeling under salt stress and re-watering. Bioscience Journal, 33, 1219–1229. https://doi.org/10.14393/BJ-v33n5a2017-37178
  • Azeem, A., Wu, Y., Xing, D., Javed, Q., & Ullah, I. (2017). Photosynthetic response of two okra cultivars under salt stress and re-watering. Journal of Plant Interactions, 12(1), 67–77. https://doi.org/10.1080/17429145.2017.1279356
  • Azeem, A., Javed, Q., Sun, J., Nawaz, M. I., Ullah, I., Kama, R., & Du, D. (2020). Functional traits of okra cultivars (chinese green and chinese red) under salt stress. Folia Horticulturae, 32(2), 159–170. https://doi.org/10.2478/fhort-2020-0015
  • Azeem, A., Sun, J., Javed, Q., Jabran, K., & Du, D. (2020). The effect of submergence and eutrophication on the trait’s performance of wedelia trilobata over its congener native wedelia chinensis. Water, 12(4), 934. https://doi.org/10.3390/w12040934
  • Azeem, A., Sun, J., Javed, Q., Jabran, K., Saifullah, M., Huang, Y., & Du, D. (2021). Water deficiency with nitrogen enrichment makes wedelia trilobata to become weak competitor under competition. International Journal of Environmental Science and Technology, 19(1), 1–8. https://doi.org/10.1007/s13762-020-03115-y
  • Azeem, A., Mai, W., & Ali, R. (2023). Modeling plant height and biomass production of cluster bean and sesbania across diverse irrigation qualities in pakistan’s thar desert. Water, 16(1), 9. https://doi.org/10.3390/w16010009
  • Azeem, A., Mai, W., & Ali, R. (2024). Modeling plant height and biomass production of cluster bean and sesbania across diverse irrigation qualities in pakistan’s thar desert. Water, 16(1), 9. https://doi.org/10.3390/w16010009
  • Bouras, H., Mamassi, A., Devkota, K. P., Choukr-Allah, R., & Bouazzama, B. (2023). Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming. Plant Stress, 10, 100295. https://doi.org/10.1016/j.stress.2023.100295
  • Bunma, S., & Balslev, H. (2019). A review of the economic botany of sesbania (leguminosae). The Botanical Review, 85(3), 185–251. https://doi.org/10.1007/s12229-019-09205-y
  • Che, Z., Wang, J., & Li, J. (2021). Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid northwest china. Agricultural Water Management, 247, 106738. https://doi.org/10.1016/j.agwat.2021.106738
  • Cui, Q., Xia, J., Yang, H., Liu, J., & Shao, P. (2021). Biochar and effective microorganisms promote sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the yellow river delta, china. Science of the Total Environment, 756, 143801. https://doi.org/10.1016/j.scitotenv.2020.143801
  • Dash, P. B., Naik, B., Nayak, J., & Vimal, S. (2022). Socio-economic factor analysis for sustainable and smart precision agriculture: An ensemble learning approach. Computer Communications, 182, 72–87. https://doi.org/10.1016/j.comcom.2021.11.002
  • Garcia, A., Grover, K., VanLeeuwen, D., Stringam, B., & Schutte, B. (2023). Growth and performance of guar (cyamopsis tetragonoloba (l.) taub.) genotypes under various irrigation regimes with and without biogenic silica amendment in arid southwest us. Plants, 12(13), 2486. https://doi.org/10.3390/plants12132486
  • Ghaffarian, M. R., Yadavi, A., Movahhedi Dehnavi, M., Dabbagh Mohammadi Nassab, A., & Salehi, M. (2020). Improvement of physiological indices and biological yield by intercropping of kochia (kochia scoparia), sesbania (sesbania aculeata) and guar (cyamopsis tetragonoliba) under the salinity stress of irrigation water. Physiology & Molecular Biology of Plants, 26(7), 1319–1330. https://doi.org/10.1007/s12298-020-00833-y
  • Ghonaim, M. M., Mohamed, H. I., & Omran, A. A. (2021). Evaluation of wheat (triticum aestivum l.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genetic Resources and Crop Evolution, 68(1), 227–242. https://doi.org/10.1007/s10722-020-00981-w
  • Goud, B. S. S., Singh, R., & Khan, W. (2021). Effect of seed inoculants and organic manures on growth and yield of organic pearl millet (pennisetum glaucum l.). Asian Journal Microbiology Biotechnology Environmental Science, 23(2), 253–257.
  • Grewal, S., Lohan, H., & Dagar, J. (2021). Micro-irrigation in drought and salinity prone areas of Haryana: Socio-economic impacts saline agriculture view project biodrainage to mitigate waterlogging view project. Journal of Soil Salinity and Water Quality, 13, 94–108.
  • Guo, X., Zhu, G., Jiao, X., & Zhou, G. (2019a). Effects of nitrogen application and planting density on growth and yield of sesbania pea grown in saline soil. Current Science, 116(5), 758–764. https://doi.org/10.18520/cs/v116/i5/758-764
  • Guo, X., Zhu, G., Jiao, X., & Zhou, G. (2019b). Effects of nitrogen application and planting density on growth and yield of sesbania pea grown in saline soil. Current Science, 00113891, 116. https://doi.org/10.18520/cs/v116/i5/758-764
  • Guo, Y., Wang, Q., Zhao, X., Li, Z., Li, M., Zhang, J., & Wei, K. (2022). Field irrigation using magnetized brackish water affects the growth and water consumption of haloxylon ammodendron seedlings in an arid area. Frontiers in Plant Science, 13, 929021. https://doi.org/10.3389/fpls.2022.929021
  • Guo, Y., Wang, Q., Zhang, J., & K, W. E. I. (2023). Research on single-parameter logistic model for relative plant height and relative dry matter of winter wheat (triticum aestivum l.) and summer maize (zea mays l.). Applied Ecology and Environmental Research, 21(3), 2539–2556. https://doi.org/10.15666/aeer/2103_25392556
  • Hailu, B., & Mehari, H. (2021). Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. Journal of Natural Sciences Research, 12, 1–10.
  • He, P., Yu, S., Zhang, F., Ma, T., Ding, J., Chen, K., Chen, X., & Dai, Y. (2022). Effects of soil water regulation on the cotton yield, fiber quality and soil salt accumulation under mulched drip irrigation in southern xinjiang, china. Agronomy, 12(5), 1246. https://doi.org/10.3390/agronomy12051246
  • Hou, X., Fan, J., Zhang, F., Hu, W., Yan, F., Xiao, C., Li, Y., & Cheng, H. (2022). Determining water use and crop coefficients of drip-irrigated cotton in south xinjiang of china under various irrigation amounts. Industrial Crops and Products, 176, 114376. https://doi.org/10.1016/j.indcrop.2021.114376
  • Huang, M., Zhang, Z., Xu, H., Zhai, Y., Wang, C., & Zhu, C. (2021). Effects of cycle irrigation with brackish and fresh water and biochar on water and salt transports of coastal saline soil. Transactions of the Chinese Society for Agricultural Machinery, 52, 238–247.
  • Hussain, I., Ali, M., Ghoneim, A. M., Shahzad, K., Farooq, O., Iqbal, S., Nawaz, F., Ahmad, S., Bárek, V., Brestic, M., Al Obaid, S., Fahad, S., Danish, S., Taban, S., Akça, H., & Datta, R. (2022). Improvement in growth and yield attributes of cluster bean through optimization of sowing time and plant spacing under climate change scenario. Saudi Journal of Biological Sciences, 29(2), 781–792. https://doi.org/10.1016/j.sjbs.2021.11.018
  • Ishaque, W., Tanvir, R., Mukhtar, M., & Sohail, M. T. (2022). Climate change and water crises in pakistan: Implications on water quality and health risks. Journal of Environmental and Public Health, 2022, 1–12. https://doi.org/10.1155/2022/5484561
  • Javed, Q., Azeem, A., Sun, J., Ullah, I., Jabran, K., Anandkumar, A., Prabakaran, K., Buttar, N., & Du, D. (2019). Impacts of salt stress on the physiology of plants and opportunity to rewater the stressed plants with diluted water: A review. Applied Ecology and Environmental Research, 17(5). https://doi.org/10.15666/aeer/1705_1258312604
  • Javed, Q., Sun, J., Azeem, A., Ullah, I., Huang, P., Kama, R., Jabran, K., & du, D. (2019). The enhanced tolerance of invasive alternanthera philoxeroides over native species under salt-stress in china. Applied Ecology and Environmental Research, 17(6), 14767–14785. https://doi.org/10.15666/aeer/1706_1476714785
  • Javed, Q., Wu, Y., Xing, D., Azeem, A., Ullah, I., & Zaman, M. (2017). Re-watering: An effective measure to recover growth and photosynthetic characteristics in salt-stressed brassica napus l. Chilean Journal of Agricultural Research, 77(1), 78–86. https://doi.org/10.4067/S0718-58392017000100010
  • Javed, Q., Wu, Y., Xing, D., Ullah, I., Azeem, A., & Rasool, G. (2018). Salt-induced effects on growth and photosynthetic traits of orychophragmus violaceus and its restoration through re-watering. Brazilian Journal of Botany, 41(1), 29–41. https://doi.org/10.1007/s40415-017-0432-x
  • Jha, S., Singh, J., Chouhan, C., Singh, O., & Srivastava, R. K. (2022). Evaluation of multiple salinity tolerance indices for screening and comparative biochemical and molecular analysis of pearl millet [pennisetum glaucum (l.) r. Br.] genotypes. Journal of Plant Growth Regulation, 41(4), 1820–1834. https://doi.org/10.1007/s00344-021-10424-0
  • Kaini, S., Gardner, T., & Sharma, A. K. (2020). Assessment of socio‐economic factors impacting on the cropping intensity of an irrigation scheme in developing countries. Irrigation and Drainage, 69(3), 363–375. https://doi.org/10.1002/ird.2427
  • Kaini, S., Harrison, M. T., Gardner, T., Nepal, S., & Sharma, A. K. (2022). The impacts of climate change on the irrigation water demand, grain yield, and biomass yield of wheat crop in nepal. Water, 14(17), 2728. https://doi.org/10.3390/w14172728
  • Kaini, S., Nepal, S., Pradhananga, S., Gardner, T., & Sharma, A. K. (2020). Representative general circulation models selection and downscaling of climate data for the transboundary koshi river basin in china and nepal. International Journal of Climatology, 40(9), 4131–4149. https://doi.org/10.1002/joc.6447
  • Kawai, T., Chen, Y., Takahashi, H., Inukai, Y., & Siddique, K. H. (2022). Rice genotypes express compensatory root growth with altered root distributions in response to root cutting. Frontiers in Plant Science, 13, 830577. https://doi.org/10.3389/fpls.2022.830577
  • Khan, I., Awan, S. A., Rizwan, M., Akram, M. A., Zia-Ur-Rehman, M., Wang, X., Zhang, X., & Huang, L. (2023). Physiological and transcriptome analyses demonstrate the silver nanoparticles mediated alleviation of salt stress in pearl millet (pennisetum glaucum l). Environmental Pollution, 318, 120863. https://doi.org/10.1016/j.envpol.2022.120863
  • Li, C., Han, H., Ablimiti, M., Liu, R., Zhang, H., & Fan, J. (2022). Morphological and physiological responses of desert plants to drought stress in a man-made landscape of the taklimakan desert shelter belt. Ecological Indicators, 140, 109037. https://doi.org/10.1016/j.ecolind.2022.109037
  • Li, C., Lei, J., Zhao, Y., Xu, X., & Li, S. (2015). Effect of saline water irrigation on soil development and plant growth in the taklimakan desert highway shelterbelt. Soil and Tillage Research, 146, 99–107. https://doi.org/10.1016/j.still.2014.03.013
  • Li, J., Fan, J., & Zhu, Z.-M. (2020). [Effects of activated water irrigation on growth characteristics of soybean under drought stress]. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 31(11), 3711–3718. https://doi.org/10.13287/j.1001-9332.202011.028
  • Liu, B., Wang, S., Kong, X., Liu, X., & Sun, H. (2019). Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the north china plain. Agricultural Water Management, 211, 98–110. https://doi.org/10.1016/j.agwat.2018.09.030
  • Mahmoud, N. E., & Abdelhameed, R. M. (2021). Superiority of modified graphene oxide for enhancing the growth, yield, and antioxidant potential of pearl millet (pennisetum glaucum l.) under salt stress. Plant Stress, 2, 100025. https://doi.org/10.1016/j.stress.2021.100025
  • Mai, W., Xue, X., & Azeem, A. (2022). Growth of cotton crop (gossypium hirsutum l.) higher under drip irrigation because of better phosphorus uptake. Applied Ecology and Environmental Research, 20(6), 4865–4878. https://doi.org/10.15666/aeer/2006_48654878
  • Mai, W., Xue, X., & Azeem, A. (2023). Plant density differentially influences seed weight in different portions of the raceme of castor. Polish Journal of Environmental Studies, 32(4), 3247–3254. https://doi.org/10.15244/pjoes/159426
  • Meftahizadeh, H., Baath, G. S., Saini, R. K., Falakian, M., & Hatami, M. (2023). Melatonin-mediated alleviation of soil salinity stress by modulation of redox reactions and phytochemical status in guar (cyamopsis tetragonoloba l.). Journal of plant growth regulation, 42(8), 4851–4869. https://doi.org/10.1007/s00344-022-10740-z
  • Ren, Z., Zhao, H., Shi, K., & Yang, G. (2023). Spatial and temporal variations of the precipitation structure in jiangsu province from 1960 to 2020 and its potential climate-driving factors. Water, 15(23), 4032. https://doi.org/10.3390/w15234032
  • Sandhu, D., Pallete, A., Pudussery, M. V., & Grover, K. K. (2021). Contrasting responses of guar genotypes shed light on multiple component traits of salinity tolerance mechanisms. Agronomy, 11(6), 1068. https://doi.org/10.3390/agronomy11061068
  • Sarwar, A. G., Tinne, F. J., Islam, N., Islam, M. M., & Haque, M. S. (2022). Effects of Salt Stress on Growth and Accumulation of NA+, K+ And ca2+ Ions in Different Accessions of Sesbania. Bangladesh Journal of Botany, 51(1), 157–167. https://doi.org/10.3329/bjb.v51i1.58832
  • Shang, C., Wang, L., Tian, C., & Song, J. (2020). Heavy metal tolerance and potential for remediation of heavy metal-contaminated saline soils for the euhalophyte suaeda salsa. Plant Signaling & Behavior, 15(11), 1805902. https://doi.org/10.1080/15592324.2020.1805902
  • Soltani, M. D., Meftahizadeh, H., Barani, M., Rahdar, A., Hosseinikhah, S. M., Hatami, M., & Ghorbanpour, M. (2021). Guar (cyamopsis tetragonoloba l.) plant gum: From biological applications to advanced nanomedicine. International Journal of Biological Macromolecules, 193, 1972–1985. https://doi.org/10.1016/j.ijbiomac.2021.11.028
  • Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831. https://doi.org/10.3389/fenvs.2021.712831
  • Suhardiman, D., Pavelic, P., Keovilignavong, O., & Giordano, M. (2018). Putting farmers’ strategies in the centre of agricultural groundwater use in the vientiane plain, laos. International journal of water resources development, 36(1), 149–169. https://doi.org/10.1080/07900627.2018.1543116
  • Tobiasz-Salach, R., Stadnik, B., & Migut, D. (2021). Assessment of the physiological condition of spring barley plants in conditions of increased soil salinity. Agronomy, 11(10), 1928. https://doi.org/10.3390/agronomy11101928
  • Ur Rahman, S., Basit, A., Ara, N., Ullah, I., & Rehman, A. U. (2021). Morpho-physiological responses of tomato genotypes under saline conditions. Gesunde Pflanzen, 73(4), 541–553. https://doi.org/10.1007/s10343-021-00576-0
  • Uslu, O. S., Babur, E., Alma, M. H., & Solaiman, Z. M. (2020). Walnut shell biochar increases seed germination and early growth of seedlings of fodder crops. Agriculture, 10(10), 427. https://doi.org/10.3390/agriculture10100427
  • Wang, Z. (2021). RETRACTED ARTICLE: Research on desert water management and desert control. European Journal of Remote Sensing, 54(sup2), 42–54. https://doi.org/10.1080/22797254.2020.1736953
  • Wei, C., Ren, S., Xu, Z., Zhang, M., Wei, R., & Yang, P. (2021). Effects of irrigation water salinity and irrigation water amount on greenhouse gas emissions and spring maize growth. Transactions of the Chinese Society of Agricultural Machinery, 52, 251–260.
  • Xia, J., Ren, J., Zhang, S., Wang, Y., & Fang, Y. (2019). Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the yellow river delta, china. Geoderma, 349, 25–35. https://doi.org/10.1016/j.geoderma.2019.04.032
  • Xiao, C., Li, M., Fan, J., Zhang, F., Li, Y., Cheng, H., Li, Y., Hou, X., & Chen, J. (2021). Salt leaching with brackish water during growing season improves cotton growth and productivity, water use efficiency and soil sustainability in southern xinjiang. Water, 13(18), 2602. https://doi.org/10.3390/w13182602
  • Yi, Z., Wang, M., & Zhao, C. (2022). Desert soilization: Let scientific principles and facts speak. The Innovation, 3(3), 100245. https://doi.org/10.1016/j.xinn.2022.100245
  • Yin, C., Dong, J., Shi, Q., Zhang, K., Zhao, Z., & Tian, C. (2012). Salt island effect of halophytic shrubs in different habitats and its ecological implication. Acta Pedologica Sinica, 49, 289–295. https://doi.org/10.5555/20123227072
  • Yuan, C., Feng, S., Huo, Z., & Ji, Q. (2019). Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid northwest china. Agricultural Water Management, 212, 424–432. https://doi.org/10.1016/j.agwat.2018.09.019
  • Zhang, T., Fan, J., Wang, S., Xu, X., & Chai, Z. (2020). Photosynthetic characteristics of haloxylon ammodendron under high salinity water irrigation. Journal of desert research, 40(5), 112. https://doi.org/10.7522/j.issn.1000-694X.2020.00023
  • Zheng, X.-J., Xu, G.-Q., Li, Y., & Wu, X. (2019). Deepening rooting depths improve plant water and carbon status of a xeric tree during summer drought. Forests, 10(7), 592. https://doi.org/10.3390/f10070592
  • Zhu, G., Xu, Y., Xu, Z., Ahmad, I., Nimir, N. E. A., & Zhou, G. (2022). Improving productivity of sesbania pea in saline soils by enhancing antioxidant capacity with optimum application of nitrogen and phosphate combination. Frontiers in Plant Science, 13, 13. https://doi.org/10.3389/fpls.2022.1027227
  • Zhu, M., Wang, Q., Sun, Y., & Zhang, J. (2021). Effects of oxygenated brackish water on germination and growth characteristics of wheat. Agricultural Water Management, 245, 106520. https://doi.org/10.1016/j.agwat.2020.106520