250
Views
0
CrossRef citations to date
0
Altmetric
Materials data analysis and utilization

Crystal structure map for materials classification and modeling

ORCID Icon
Article: 2355860 | Received 02 Jan 2024, Accepted 06 May 2024, Published online: 03 Jun 2024

References

  • Jose R, Ramakrishna S. Materials 4.0: materials big data enabled materials discovery. Appl Mater Today. 2018;10:127–16. doi: 10.1016/j.apmt.2017.12.015
  • Day GM, Cooper AI. Energy–structure–function maps: cartography for materials discovery. Adv Mater. 2018;30(37):1704944. doi: 10.1002/adma.201704944
  • Born M, Oppenheimer R. Zur Quantentheorie der Molekeln. Ann Phys. 1927;389(20):457–484. doi: 10.1002/andp.19273892002
  • CIF Dictionary. Available from: https://www.iucr.org/resources/cif/dictionaries/
  • International Union of Crystallography (IUCr). Available from: https://www.iucr.org/
  • The Inorganic Crystal Structure Database (ICSD). Available from: https://icsd.fiz-karlsruhe.de/
  • Crystallography Open Database (COD). Available from: http://www.crystallography.net/cod/
  • AtomWork. Available from: https://crystdb.nims.go.jp/
  • Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Crystallogr. 2008;41:653–658. Available from: https://jp-minerals.org/vesta/en/
  • CrystalMaker Software. Available from: https://crystalmaker.com/
  • The Materials Project. Available from: https://materialsproject.org/
  • NOMAD Center of Excellence. Available from: https://nomad-coe.eu/
  • The Open Quantum Materials Database (OQMD). Available from: http://oqmd.org/
  • The AFLOW standard encyclopedia of crystallographic prototypes. Available from: http://aflowlib.org/prototype-encyclopedia/
  • Stokes HT, Hatch DM. FINDSYM: program for identifying the space-group symmetry of a crystal. J Appl Cryst. 2005;38(1):237–238. doi: 10.1107/S0021889804031528
  • Stokes HT, Hatch DM, Campbell BJ. FINDSYM, ISOTROPY software suite. Available from: https://iso.byu.edu/
  • Connolly JWD, Williams AR. Density-functional theory applied to phase transformations in transition-metal alloys. Phys Rev B. 1983;27(8):5169–5172. doi: 10.1103/PhysRevB.27.5169
  • Oganov AR, Valle M. How to quantify energy landscapes of solids. J Chem Phys. 2009;130(10):104504. doi: 10.1063/1.3079326
  • Yamashita T, Sato N, Kino H, et al. Crystal structure prediction accelerated by Bayesian optimization. Phys Rev Mater. 2018;2(1):013803. doi: 10.1103/PhysRevMaterials.2.013803
  • Sato N, Yamashita T, Oguchi T, et al. Adjusting the descriptor for a crystal structure search using bayesian optimization. Phys Rev Mater. 2020;4(3):033801. doi: 10.1103/PhysRevMaterials.4.033801
  • Yamashita T, Kanehira S, Sato N, et al. CrySPY: a crystal structure prediction tool accelerated by machine learning. Sci Technol Adv Mater. 2021;1(1):87–97. doi: 10.1080/27660400.2021.1943171
  • Bartók AP, Kondor R, Csányi G. On representing chemical environments. Phys Rev B. 2013;87(18):184115. doi: 10.1103/PhysRevB.87.184115
  • Zimmermann NER, Jain A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 2020;10(10):6063–6081. doi: 10.1039/c9ra07755c
  • Torgerson WS. Multidimensional scaling: I. Theory and method. Psychometrika. 1952;17(4):401–419. doi: 10.1007/BF02288916
  • Borg I, Groenen P. Modern multidimensional scaling, springer series in statistics. NY: Springer; 1997. Chap. 12, p. 261–267. doi: 10.1007/978-1-4757-2711-1_12
  • Cox TF, Cox MAA. Multidimensional scaling. 2nd ed. Boca Raton (FL): Chapman & Hall/CRC; 2001.
  • Sibson R. Studies in the robustness of multidimensional scaling: perturbational analysis of classical scaling. J R Statist Soc B. 1979;41(2):217–229. Available from: https://www.jstor.org/stable/2985036
  • Cox MAA, Cox TF. Handbook of data visualization. Chen C, Härdle W Unwin A, editors. Vol. Chap. III.3. Berlin: Springer-Verlag; 2008. p. 315–347. doi: 10.1007/978-3-540-33037-0_14
  • Bishop CM. Pattern recognition and machine learning. NY: Springer-Verlag; 2006.
  • Soven P. Coherent-potential model of substitutional disordered alloys. Phys Rev. 1967;156(3):809–813. doi: 10.1103/PhysRev.156.809
  • Ehrenreich H, Schwartz LM, Ehrenreich H, Seitz F, Turnbull D, editors. Solid state physics. Vol. 31. NY: Academic Press; 1976. p. 149.
  • Shiba H. A reformulation of the coherent potential approximation and its applications. Prog Theor Phys. 1971;46(1):77–94. doi: 10.1143/PTP.46.77
  • Korringa J. On the calculation of the energy of a Bloch wave in a metal. Physica. 1947;13(6–7):392–400. doi: 10.1016/0031-8914(47)90013-X
  • Kohn W, Rostoker N. Solution of the schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev. 1954;94(5):1111–1120. doi: 10.1103/PhysRev.94.1111
  • Zunger A, Wei S-H, Ferreira LG, et al. Special quasirandom structures. Phys Rev Lett. 1990;65(3):353–356. doi: 10.1103/PhysRevLett.65.353
  • Wei S-H, Ferreira LG, Bernard JE, et al. Electronic properties of random alloys: special quasirandom structures. Phys Rev B. 1990;42(15):9622–9649. doi: 10.1103/PhysRevB.42.9622
  • Wimmer E, Krakauer H, Weinert M, et al. Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule. Phys Rev B. 1981;24(2):864–875. doi: 10.1103/PhysRevB.24.864
  • Weinert M, Wimmer E, Freeman AJ. Total-energy all-electron density functional method for bulk solids and surfaces. Phys Rev B. 1982;26(8):4571–4578. doi: 10.1103/PhysRevB.26.4571
  • Soler JM, Williams AR. Augmented-plane-wave forces. Phys Rev B. 1990;42(15):9728–9731. doi: 10.1103/PhysRevB.42.9728
  • Oguchi T, Terakura K, Akai H, editors. Inter-atomic potentials and structural stability. Berlin: Springer-Verlag; 1993. p. 33–41.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • Blöchl PE, Jepsen O, Andersen OK. Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B. 1994;49(23):16223–16233. doi: 10.1103/PhysRevB.49.16223
  • Momida H, Hamada T, Takagi Y, et al. Theoretical study on dielectric response of amorphous alumina. Phys Rev B. 2006;73(5):054108. doi: 10.1103/PhysRevB.73.054108
  • Zhu C, Xue J. Structure and properties relationships of β-Al2O3 electrolyte materials. J Alloys Compd. 2012;517:182–185. doi: 10.1016/j.jallcom.2011.12.080
  • Samain L, Jaworski Edén AM, Ladd DM, et al. Structural analysis of highly porous γ-Al2O3. J Solid State Chem. 2014;217:1–8. doi: 10.1016/j.jssc.2014.05.004
  • Rudolph M, Motylenko M, Rafaja D. Structure model of γ-Al2O3 based on planar defects. IucrJ. 2019;6(1):116–127. doi: 10.1107/S2052252518015786
  • Kanda Y, Fujii H, Oguchi T. Sparse modeling of chemical bonding in binary compounds. Sci Tech Adv Mater. 2019;20(1):1178–1188. doi: 10.1080/14686996.2019.1697858
  • Kvalseth TO. Cautionary note about R2. Am Stat. 1985;39(4):279–285. doi: 10.1080/00031305.1985.10479448
  • Schüürmann G, Ebert R-U, Chen J, et al. External validation and prediction employing the predictive squared correlation coefficient — test set activity mean vs training set activity mean. J Chem Inf Model. 2008;48(11):2140–2145. doi: 10.1021/ci800253u
  • Fujita A, Fujieda S, Hasegawa Y, Fukamichi K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys Rev B. 2003;67(10):104416. doi: 10.1103/PhysRevB.67.104416
  • Krypyakevych PI, Zarenchnyuk OS, Gladyshevskii EI, et al. Ternäre verbindungen vom NaZn13-Typ. Anorg Allg Chem. 1968;358(1–2):90–96. doi: 10.1002/zaac.19683580110
  • Tang W, Liang J, Guanghui R, et al. Study of AC susceptibility on the LaFe13–xSix system. Phys Status Solidi A. 1994;141(1):217–222. doi: 10.1002/pssa.2211410121
  • Han M-K, Miller GJ. An application of the “coloring problem”: structure−composition−bonding relationships in the magnetocaloric materials LaFe13-xSix. Inorg Chem. 2008;47(2):515–528. doi: 10.1021/ic701311b
  • Emsley J. The elements. 3rd ed. Oxford: Clarendon Press; 1998.
  • Gschneidner KA, Massalski TB., editor. Binary alloy phase diagrams. II Ed. Vol. 2. OH: ASM International; 1990. p. 1718–1719.