1,239
Views
1
CrossRef citations to date
0
Altmetric
Lithosphere

Seismic hazard estimation and medium-term earthquake precursor analysis of North East India: an assessment on large earthquake scenario

& ORCID Icon
Pages 46-64 | Received 28 Dec 2022, Accepted 13 Mar 2023, Published online: 30 Mar 2023

References

  • Abdel-Gawad, M. (1972). Wrench movements in the Baluchistan arc and relation to Himalayan–indian ocean tectonics: Reply. GSA Bulletin, 83(5), 1561–1564. https://doi.org/10.1130/0016-7606(1972)83[1561:WMITBA]2.0.CO;2
  • Acharyya, S. K., & Sengupta, S. (1998). The structure of the Siang window, it’s evolution and bearing on the nature of eastern syntaxis of the Himalaya. National Academy Science Letters, 21, 177–192.
  • Aki, K. (1965). Maximum likelihood estimates of b-value in the formula log N = a − bM and its confidence limits, bull. Bull. Earthquake Research Institute, 43, 237–239.
  • Angelier, J., & Baruah, S. (2009). Seismotectonics in Northeast India: A stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophysical Journal International, 178(1), 303–326. https://doi.org/10.1111/j.1365-246X.2009.04107.x
  • Baro, O., & Kumar, A. (2015). A review on the tectonic setting and seismic activity of the Shillong plateau in the light of past studies. Disaster Advances, 8(7), 34–45.
  • Baruah, S., Duarah, R., & Yadav, D. (1997). Pattern of Seismicity in Shillong-Mikir Plateau and the orientation of compressional axis. Journal of the Geological Society of India, 49(5), 533–538.
  • Bilham, R., & England, P. (2001). Plateau pop-up during the 1897 Assam earthquake. Nature, 410(6830), 806–809. https://doi.org/10.1038/35071057
  • BIS. (2004) . Seismic zoning map of India. Bureau Indian Standard publication.
  • Bora, D. K., Hazarika, D., Borah, K., Rai, S. S., & Baruah, S. Crustal shear-wave velocity structure beneath northeast India from teleseismic receiver function analysis. (2014). Journal of Asian Earth Sciences, 90(1), 14. ISSN 1367-9120. https://doi.org/10.1016/j.jseaes.2014.04.005
  • Chan, L., & Chandler, A. (2001). Spatial bias in b-value of the frequency– magnitude relation for the Hong Kong region. Journal of Asian Earth Sciences, 20(1), 73–81. https://doi.org/10.1016/S1367-9120(01)00025-6
  • Chan, C. -H., Wu, Y. -M., Tseng, T. -L., Lin, T. -L., & Chen, C. -C. (2012). Spatial and temporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics, 532/535, 215 222. https://doi.org/10.1016/j.tecto.2012.02.004
  • Das Gupta, A. B., & Biswas, A. K. (2000). Microseismicity and tectonics in northeast India (1st edn ed.). Geol Soc. of India.
  • Dasgupta, S., & Nandy, D. (1982). Seismicity and tectonics of Meghalaya Plateau, Northeastern India. In VII Symposium on earthquake engineering (I) . University of Roorkee, 10–12 Nov 1982.
  • Evans, P. (1964). The tectonic framework of Assam. Journal of the Geological Society of India, 5, 80–96.
  • Gee, E. R. (1934). The Dhubri earthquake of the 3rd July 1930. Memoirs of the Geological Survey of India, 65(1), 1–106.
  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California, Bull. Bulletin of the Seismological Society of America, 34(4), 185–188. https://doi.org/10.1785/BSSA0340040185
  • Hirata, T. (1989). A correlation between the b value and the fractal dimension of earthquakes. Journal of Geophysical Research, 94(B6), 7507–7514. https://doi.org/10.1029/JB094iB06p07507
  • Holt, W. E., Ni, J. F., Wallace, T. C., & Haines, A. J. (1991). The active tectonics of the eastern Himalayan syntaxis and surrounding regions. Journal of Geophysical Research: Solid Earth, 96(B9), 14595–14632. https://doi.org/10.1029/91JB01021
  • Hossain, M., Khan, M., Abdullah, R., & Mukherjee, S. (2021). Late Cenozoic transpression at the plate boundary; kinematics of the eastern segment of the Dauki FAult zone (Bangladesh), and tectonic evolution of the petroliferous NE Bengal basin. Marine and Petroleum Geology, 131, 105133. https://doi.org/10.1016/j.marpetgeo.2021.105133
  • Ishimoto, M., & Iida, K. (1939). Observations sur les seismes enregistres par le microsismographe construit dernierement (In French). Bull. Earthquake Research Institute, 17, 443–478.
  • Kayal, J. R. (1991). Earthquake prediction in northeast India - a review. Pure and Applied Geophysics, 136(2/3), 297–313. https://doi.org/10.1007/BF00876379
  • Kayal, J. R. (2001). Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics, 339(3–4), 331–351. https://doi.org/10.1016/S0040-1951(01)00129-9
  • Kayal, J. R. (2008). Microearthquake seismology and seismotectonics of South Asia. Springer/Capital Pub Co.
  • Khattri, K., Wyss, M., Gaur, V. K., Saha, S. N., & Bansal, V. K. (1983). Local seismic activity in the region of the Assam Gap, northeast India. Bulletin of the Seismological Society of America, 73(2), 459–469.
  • Mitra, S., Priestley, K., Bhattacharyya, A., & Gaur, V. K. (2005). Crustal structure and earthquake focal depths beneath north eastern India and southern Tibet, Crustal structure beneath NE India. Geophysical Journal International, 160(1), 227–248. https://doi.org/10.1111/j.1365-246X.2004.02470.x
  • Mogi, K. (1962). Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of Earthquake Research Institute, University of Tokyo, 40(4), 831–853.
  • Mohanty, D. D. (2022). Theory and practices involved in depth and source localization of anisotropy: Recent developments in subsurface investigation (1st ed.). CRC Press. https://doi.org/10.1201/9781003177692
  • Mohanty, D. D. (2023). Source localized modelling to estimate the depth of anisotropy beneath eastern Himalaya using spatial coherency of shear-wave splitting parameters. Physics of the Earth and Planetary Interiors 2023, 336, 106987. https://doi.org/10.1016/j.pepi.2023.106987
  • Mohanty, D. D., Biswal, S., Phukan, M. K., & Ayodeji, E. A. (2021). Possible depth and source localization of seismic anisotropy beneath Shillong Plateau and Himalayan foredeep region: An implication towards deformation mechanisms. Geological Journal, 57(12), 1–12. https://doi.org/10.1002/gj.4334
  • Mohanty, D. D., & Mandal, P. (2021). Evidence of heterogeneous and unstable anisotropic settings beneath the Northeast Indian lithosphere from characterization of null splitting measurements. Acta Geophysica, 69(6), 2035–2050. https://doi.org/10.1007/s11600-021-00676-5
  • Mohanty, D. D., & Mondal, P. (2019) “Mantle dynamics and deformation patterns beneath Shillong Plateau inferred from Shear wave splitting: The role of major regional geological structures.” In AGU Fall Meeting Abstracts, San Francisco, USA, vol. 2019, pp. S41D–0563. 2019.
  • Mohanty, D. D., & Mondal, P. (2020). Disparate behaviour of deformation patterns beneath northeast Indian lithosphere inferred from shear wave splitting analysis. Physics of the Earth and Planetary Interiors, 298, 106315. https://doi.org/10.1016/j.pepi.2019.106315
  • Mohanty, D. D., & Singh, A. (2021). Shear wave birefringence and current configuration of active tectonics of Shillong plateau: An appraisal of Indian plate motion and regional structures. International Journal of Earth Sciences, 111(1), 269–286. https://doi.org/10.1007/s00531-021-02114-9
  • Mohanty, D. D., Singh, A., O’driscoll, L. J., Kumar, M. R., Srinagesh, D., & Humphreys, E. D. (2016). P-wave velocity structure below India and Tibet incorporating anisotropic delay time effects. Geochemistry, Geophysics, Geosystems, 17(3), 725–738. https://doi.org/10.1002/2015GC006064
  • Mondal, P., & Mohanty, D. D. (2021). Mantle deformation and seismic anisotropy beneath Northeast India inferred from SKKS birefringence. Studia Geophysica Et Geodaetica, 65(1), 36–52. https://doi.org/10.1007/s11200-020-1121-y
  • Najman, Y., Bracciali, L., Parrish, R. R., Chisty, E., & Copley, A. (2016). Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth and Planetary Science Letters, 433, 1–9. https://doi.org/10.1016/j.epsl.2015.10.017
  • Nandy, D. R. (1980). Tectonics patterns in Northeastern India. Indian Journal of Earth Sciences, 7, 103–107.
  • Nandy, D. R. (2001). Geodynamics of northeastern India and the adjoining region. ABC Publication.
  • Nuannin, P. (2005). Spatial and temporal b value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophysical Research Letters, 32(11), 1–4. https://doi.org/10.1029/2005GL022679
  • Nuannin, P., & Kulhánek, O. (2012). A study of b-value precursors applied to the Andaman-Sumatra region. Journal of Earth Science and Engineering, 2, 166–188.
  • Pacheco, J. F., Scholz, C. H., & Sykes, L. R. (1992). Changes in frequency–size relationship from small to large earthquakes. Nature, 355(6355), 71–73. https://doi.org/10.1038/355071a0
  • Prasad, S., & Singh, C. (2015). Evolution of b-values before large earthquakes of mb≥ 6.0 in the Andaman region. Geologica Acta: An International Earth Science Journal, 13(3), 205–210.
  • Rao, N. P., & Kumar, M. R. (1997). Uplift and tectonics of the Shillong Plateau, Northeast India. Journal of Physics of the Earth, 45(3), 167–176. https://doi.org/10.4294/jpe1952.45.167
  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495. https://doi.org/10.1029/JB090iB07p05479
  • Sarma, K. P. (2014). Shillong supergroup: A new lithostratigraphic unit in the basement-cover Precambrian rocks of the Shillong plateau, Northeast India. International Journal of Geology, Earth & Environmental Sciences, 4(2), 158–171.
  • Scholz, C. H. (1968). The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1), 399–415. https://doi.org/10.1785/BSSA0580010399
  • Singh, C. (2014). Spatial variation of seismic b-values across the NW Himalaya. Geomatics, Natural Hazards and Risk, 7(2), 1–9. https://doi.org/10.1080/19475705.2014.941951
  • Singh, C., Bhattacharya, P. M., & Chadha, R. K. (2008). Seismicity in the Koynawarna reservoir site in western India: Fractal and b-value mapping. Bulletin of the Seismological Society of America, 98(1), 476 482. https://doi.org/10.1785/0120070165
  • Singh, C., & Chadha, R. (2010). Variations in the frequency–magnitude distribution of earthquakes with depth in the Koyna–Warna region, India. Journal of Asian Earth Sciences, 39(4), 331–334. https://doi.org/10.1016/j.jseaes.2010.03.014
  • Singh, A., Eken, T., Mohanty, D. D., Saikia, D., Singh, C., & Kumar, M. R. (2016). Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves. Physics of the Earth and Planetary Interiors, 250, 1–11. https://doi.org/10.1016/j.pepi.2015.11.001
  • Singh, A., Kumar, M. R., Mohanty, D. D., Singh, C., Biswas, R., & Srinagesh, D. (2017). Crustal structure beneath India and Tibet: New constraints from inversion of receiver functions. Journal of Geophysical Research – Solid Earth, 122(10), 7839–7859. https://doi.org/10.1002/2017JB013946
  • Singh, C., Mondal, P., Singh, S., Mohanty, D. D., Jaiswal, N., & Kumar, M. R. (2015). Lg attenuation tomographic models of Himalaya and southern Tibet. Tectonophysics, 664, 176–181. https://doi.org/10.1016/j.tecto.2015.09.009
  • Singh, C., Singh, A., & Chadha, R. K. (2009). Fractal and b-value mapping in eastern Himalaya and southern Tibet, Bull. Bulletin of the Seismological Society of America, 99(6), 3529–3533. https://doi.org/10.1785/0120090041
  • Toker, M. (2021). Symptomatic discretization of small earthquake clusters reveals seismic coupling to 2017 Bodrum earthquake (Mw 6.6) in the Gulf of Gökova (SW corner of Turkey): Viscous-compliant seismogenesis over back-arc setting. Journal of African Earth Sciences, 177, 104156. https://doi.org/10.1016/j.jafrearsci.2021.104156
  • Utsu, T. (1965). A method for determining the value of b in the formula logN= a − bM showing the magnitude–frequency relation for earthquakes, Geophys. Bulletin Hokkaido University, 13, 99–103.
  • Wiemer, S. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan, Bull. Bulletin of the Seismological Society of America, 90(4), 859–869. https://doi.org/10.1785/0119990114
  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP, Seismol. Seismological Research Letters, 72(3), 373–382. https://doi.org/10.1785/gssrl.72.3.373
  • Wiemer, S., & Katsumata, K. (1999). Spatial variability of seismicity parameters in aftershock zones. Journal of Geophysical Research: Solid Earth, 104:13135–13151. https://doi.org/10.1029/1999JB900032
  • Wiemer, S., & Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities: An improved technique to calculate recurrence times. Journal of Geophysical Research: Solid Earth, 102(B7), 15115–15128. https://doi.org/10.1029/97JB00726
  • Wyss, M. (1973). Towards a physical understanding of the earthquake frequency distribution. Geophysical Journal of the Royal Astronomical Society, 31(4), 341–359. https://doi.org/10.1111/j.1365-246X.1973.tb06506.x
  • Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1–2), 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004
  • Yin, A., Dubey, C., Kelty, T. K., Gehrels, G., Chou, C. Y., Grove, M., & Lovera, O. (2006). Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Current Science, 90(2), January 2006.