869
Views
0
CrossRef citations to date
0
Altmetric
Earth Observations

Urban subsidence in rapid economic development: the case of Luoyang city, Henan Province

, , , , , ORCID Icon & show all
Pages 252-271 | Received 29 Nov 2022, Accepted 15 Aug 2023, Published online: 31 Aug 2023

References

  • Alatza, S., Papoutsis, I., Paradissis, D., Kontoes, C., & Papadopoulos, G. (2020). Multi-temporal InSAR analysis for monitoring ground deformation in Amorgos Island, Greece. Sensors, 20(2), 338. https://doi.org/10.3390/s20020338
  • Bai, L., Jiang, L. M., Zhao, Y., Li, Z. H., Cao, G. L., Zhao, C. Y., Liu, R., & Wang, H. S. (2021). Quantifying the influence of long-term overexploitation on deep groundwater resources across Cangzhou in the north China plain using InSAR measurements. Journal of Hydrology, 605, 127368. https://doi.org/10.1016/j.jhydrol.2021.127368
  • Beradino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
  • Bru, G., González, P. J., Mateos, R. M., Roldán, F. J., Herrera, G., Béjar-Pizarro, M., & Fernández, J. (2017). A-DInSAR monitoring of landslide and subsidence activity: A case of urban damage in Arcos de la Frontera, Spain. Remote Sensing, 9(8), 787–804. https://doi.org/10.3390/rs9080787
  • Cao, J. T., Zhang, X. Y., Fan, H. D., Li, G. H., & Huang, C. (2022). Surface deformation monitoring in the Yellow River delta by using DS-InSAR technique. Journal of Geodesy and Geodynamics, 42(11), 1177–1183. https://doi.org/10.14075/j.jgg.2022.11.015
  • Chaussard, E., Amelung, F., Abidin, H., & Hong, S. (2013). Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment, 128, 150–161. https://doi.org/10.1016/j.rse.2012.10.015
  • Chaussard, E., Wdowinski, S., Cabral-Cano, E., & Amelung, F. (2014). Land subsidence in central Mexico detected by alos insar time-series. Remote Sensing of Environment, 140, 94–106. https://doi.org/10.1016/j.rse.2013.08.038
  • Chen, J. L., Zhou, Y., Chen, G., & Hao, M. (2021). Decades of ground deformation in the Weihe Graben, Shaanxi Province, China, in response to various land processes, observed by radar interferometry and levelling. Remote Sensing, 13(12), 2374. https://doi.org/10.3390/rs13122374
  • Cigna, F., & Tapete, D. (2021). Present-day land subsidence rates, surface faulting hazard and risk in Mexico city with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment, 253, 112161. https://doi.org/10.1016/j.rse.2020.112161
  • da Silva Monteiro, L., de Oliveira-Júnior, J. F., Ghaffar, B., Tariq, A., Qin, S., Mumtaz, F., Correia Filho, W. L. F., Shah, M., da Rosa Ferraz Jardim, A. M., da Silva, M. V., de Barros Santiago, D., Barros, H. G., Mendes, D., Abreu, M. C., de Souza, A., Pimentel, L. C. G., da Silva, J. L. B., Aslam, M., & Kuriqi, A. (2022). Rainfall in the urban area and its impact on climatology and population growth. Atmosphere, 13(10), 1610. https://doi.org/10.3390/atmos13101610
  • de Oliveira-Júnior, J. F., Correia Filho, W. L. F., da Silva Monteiro, L., Shah, M., Hafeez, A., de Gois, G., Lyra, G. B., Carvalho, M. A. D., Barros Santiago, D. D., Souza, A. D., Mendes, D., Souza Costa, C. E. A. D., Blanco, C. J. C., Zeri, M., Pimentel, L. C. G., Jamjareegulgarn, P., & Silva, E. B. D. (2022). Urban rainfall in the capitals of Brazil: Variability, trend, and wavelet analysis. Atmospheric Research, 267, 105984. https://doi.org/10.1016/j.atmosres.2021.105984
  • Dinar, A., Esteban, E., Calvo, E., Herrera, G., Teatini, P., Tomás, R., Li, Y., Ezquerro, P., & Albiac, J. (2021). We lose ground: Global assessment of land subsidence impact extent. Science of the Total Environment, 786(1), 147415. https://doi.org/10.1016/j.scitotenv.2021.147415
  • Du, S. S., & Liu, F. L. (2014). Loessic palaeolith discovery at the Beiyao site, Luoyang, and its implications for understanding the origin of modern humans in northern China. Quaternary International, 349, 308–315. https://doi.org/10.1016/j.quaint.2014.05.037
  • Fan, J., Wang, H. Y., Tao, A. J., & Xu, J. H. (2009). Coupling industrial location with urban System distribution: A case study of China’s Luoyang municipality. Acta Geographica Sinica, 64(2), 131–141. https://doi.org/10.3321/j.issn:0375-5444.2009.02.001
  • Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8–20. https://doi.org/10.1109/36.898661
  • Goorabi, A., Karimi, M., Yamani, M., & Perissin, D. (2020). Land subsidence in Isfahan metropolitan and its relationship with geological and geomorphological settings revealed by Sentinel-1A InSAR observations. Journal of Arid Environments, 181, 104238. https://doi.org/10.1016/j.jaridenv.2020.104238
  • Guo, J. M., Zhou, L., Yao, C. L., & Hu, J. Y. (2016). Surface subsidence analysis by multi-temporal InSAR and GRACE: A case study in Beijing. Sensors, 16(9), 1495. https://doi.org/10.3390/s16091495
  • Han, Y. K., Zou, J. G., Lu, Z., Qu, F. F., Kang, Y., & Li, J. W. (2020). Ground deformation of Wuhan, China, revealed by multi-temporal InSAR analysis. Remote Sensing, 12(22), 3788. https://doi.org/10.3390/rs12223788
  • Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J., Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W.-C., Kakar, N., Sneed, M., Tosi, L., Wang, H., & Ye, S. (2021). Mapping the global threat of land subsidence. Science, 371(6524), 34–36. https://doi.org/10.1126/science.abb8549
  • Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7), B07407. https://doi.org/10.1029/2006JB004763
  • Huang, J. S., Zhang, C. Y., & Wang, J. H. (2021). Monitoring surface deformation in Songming county using time series InSAR technology. Bulletin of Surveying & Mapping, 07, 103–106+116. https://doi.org/10.13474/j.cnki.11-2246.2021.0217
  • Hu, Z. J., Zhao, Z. J., Mo, D. G., & Yang, J. C. (2012). Problems of geological hazards in Luoyang city and countermeasures for prevention and control. West-China Exploration Engineering, 24(3), 136–137+140. https://doi.org/10.3969/j.issn.1004-5716.2012.03.050
  • Jia, Y., Zhang, Y. Z., Wang, N. L., Huang, C. C., Qiu, H. J., Wang, H. Y., Yu, Y. K., Seilbike, A., Zou, M. B., Lin, X., Tan, Z. H., Liu, W. Q., Hu, S., & Patton, N. R. (2021). Chronostratigraphic framework and paleoenvironmental interpretation of the Holocene loess-paleosol sequence in the Luoyang Basin, central China. Aeolian Research, 48, 100657. https://doi.org/10.1016/j.aeolia.2020.100657
  • Lai, W. Y., Shen, Q., Wang, H. S., Shum, C. K., Jiang, L. M., Yang, B. H., Dong, J. L., Gao, F., Zhao, Y. L., & Liu, T. T. (2022). InSAR-derived land subsidence in Wuhan between 2015 and 2020. All Earth, 34(1), 224–242. https://doi.org/10.1080/27669645.2022.2110654
  • Larson, K. J., Başaǧaoǧlu, H., & Mariño, M. A. (2001). Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman city area, California, using a calibrated numerical simulation model. Journal of Hydrology, 242(1–2), 79–102. https://doi.org/10.1016/S0022-1694(00)00379-6
  • Li, G. E., & Zhou, Y. H. (2017). Study on fusion methods of InSAR、Leveling and GPS data InSAR. Bulletin of Surveying & Mapping, 09, 78–82. https://doi.org/10.13474/j.cnki.11-2246.2017.0292
  • Li, J. H., Zhou, L., Zhu, Z. Z., Qin, J., Xian, L. X., Zhang, D., & Huang, L. (2022). Surface deformation mechanism analysis in Shanghai areas based on TS-InSAR technology. Remote Sensing, 14(17), 4368. https://doi.org/10.3390/rs14174368
  • Lyu, H. M., Shen, S. L., Zhou, A. N., & Yang, J. (2019). Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Science of the Total Environment, 717, 135310. https://doi.org/10.1016/j.scitotenv.2019.135310
  • Lyu, H. M., Zhou, W. H., Shen, S. L., & Zhou, A. N. (2020). Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen. Sustainable Cities and Society, 56, 102103. https://doi.org/10.1016/j.scs.2020.102103
  • Malik, K., Kumar, D., Perissin, D., & Pradhan, B. (2022). Estimation of ground subsidence of New Delhi, India using ps-insar technique and multi-sensor radar data. Advances in Space Research, 69(4), 1863–1882. https://doi.org/10.1016/j.asr.2021.08.032
  • Ma, B. Q., & Zhang, Y. (2008). The analysis of ground sedimentation mechanism of Luoyang city. Shanxi Architecture, 03(34), 11–13. https://doi.org/10.3969/j.issn.1009-6825.2008.03.006
  • Pan, C., Jiang, L. M., Sun, Q. S., & Jiang, Y. N. (2020). Monitoring and analyzing Chengdu ground subsidence based on InSAR technology by using Sentinel-1 radar image. Journal of Geodesy and Geodynamics, 40(2), 198–203. https://doi.org/10.14075/j.jgg.2020.02.017
  • Poland, M., Burgmann, R., Dzurisin, D., Lisowski, M., Masterlark, T., Owen, S., & Fink, J. (2006). Constraints on the mechanism of long-term, steady subsidence at medicine Lake volcano, northern California, from GPS, leveling, and InSAR. Journal of Volcanology and Geothermal Research, 150(1–3), 55–78. https://doi.org/10.1016/j.jvolgeores.2005.07.007
  • Qiao, Y. K., & Peng, F. L. (2016). Master planning for underground space in Luoyang: A case of a representative historic city in China. Procedia Engineering, 165, 119–125. https://doi.org/10.1016/j.proeng.2016.11.743
  • Scaioni, M., Marsella, M., Crosetto, M., Tornatore, V., & Wang, J. (2018). Geodetic and Remote-Sensing Sensors for Dam deformation monitoring. Sensors, 18(11), 3682–3707. https://doi.org/10.3390/s18113682
  • Seidel, M., Marzahn, P., & Ludwig, R. (2016). Monitoring of sea dike structures by the means of combined StaMPS multi-temporal InSAR approach. Procedia Computer Science, 100, 1147–1154. https://doi.org/10.1016/j.procs.2016.09.268
  • Serrano-Juan, A., Pujades, E., Vázquez-Suñè, E., Crosetto, M., & Cuevas-González, M. (2016). Leveling vs. InSAR in urban underground construction monitoring: Pros and cons. Case of la sagrera railway station (Barcelona, Spain). Engineering Geology, 218, 1–11. https://doi.org/10.1016/j.enggeo.2016.12.016
  • Shi, X. G., Zhang, S. C., Jiang, M., Pei, Y. Y., Qu, T. T., Xu, J. H., & Yang, C. (2021). Spatial and temporal subsidence characteristics in Wuhan (China), during 2015–2019, inferred from Sentinel-1 synthetic aperture radar (SAR) interferometry. Natural Hazards and Earth System Sciences, 21(8), 2285–2297. https://doi.org/10.5194/nhess-21-2285-2021
  • Sneed, M., & Brandt, J. T. (2015). Land subsidence in the San Joaquin valley, California, USA, 2007–2014. Proceedings of the International Association of Hydrological Sciences, 372, 23–27. https://doi.org/10.5194/piahs-372-23-2015
  • Wang, X. G., Wu, D. M., Ge, Y., & Wang, J. L. (2000). Study on the Countermeasure for the groundwater Leveling in Luoyang city. Resources Guide, 03, 205–210.
  • Ye, Y. C., Yan, C. D., Luo, X. X., Zhang, R. F., & Yuan, G. J. (2022). Analysis of ground subsidence along Zhengzhou metro based on time series InSAR. National Remote Sensing Bulletin, 26(7), 1342–1353. https://doi.org/10.11834/jrs.20211246
  • Yin, Y. P., Zhang, Z. C., & Zhang, K. J. (2005). Land subsidence and countermeasures for its prevention in China. The Chinese Journal of Geological Hazard and Control, 02(16), 1–8. https://doi.org/10.3969/j.issn.1003-8035.2005.02.001
  • Zhang, L. P. (2021). Research on the impact of rail transit construction on urban high-quality development—taking Luoyang city as an example. Science Technology Information, 19(18), 55–57+61. https://doi.org/10.16661/j.cnki.1672-3791.2107-5042-7175
  • Zhang, X. T., Yang, X. L., He, X. F., Ma, H. T., Yu, Z. X., Ren, G. W., Zhang, H., & Zhang, J. S. (2022). Integrated GB-InSAR images and terrain data for emergency deformation monitoring assisted by point clouds. Geomatics and Information Science of Wuhan University, 47(7), 1081–1092. https://doi.org/10.13203/j.whugis20200280
  • Zhao, Y. Z., Zhou, L., Wang, C., Li, J. H., Qin, J., Sheng, H. Q., Huang, L. K., & Li, X. (2022). Analysis of the spatial and temporal evolution of land subsidence in Wuhan, China from 2017 to 2021. Remote Sensing, 14(13), 3142. https://doi.org/10.3390/rs14133142
  • Zheng, Q., Shen, S. L., Zhou, A. N., & Lyu, H. M. (2022). Inundation risk assessment based on G-DEMATEL-AHP and its application to Zhengzhou flooding disaster. Sustainable Cities and Society, 86, 104138. https://doi.org/10.1016/j.scs.2022.104138
  • Zhou, L., Guo, J. M., Hu, J. Y., Li, J. W., Xu, Y. F., Pan, Y. J., & Shi, M. (2017). Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1A data by SBAS-InSAR. Remote Sensing, 9(10), 982. https://doi.org/10.3390/rs9100982
  • Zhou, L., Zhao, Y. Z., Zhu, Z. L., Ren, C., Yang, F., Huang, L., & Li, X. (2022). Spatial and temporal evolution of surface subsidence in Tianjin from 2015 to 2020 based on SBAS-InSAR technology. Journal of Geodesy and Geoinformation Science, 5(1), 60–72. https://doi.org/10.11947/j.JGGS.2022.0107
  • Zhu, L., Gong, H. L., Li, X. J., Wang, R., Chen, B. B., Dai, Z. X., & Teatini, P. (2015). Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243–255. https://doi.org/10.1016/j.enggeo.2015.04.020