Publication Cover
LHB
Hydroscience Journal
Volume 108, 2022 - Issue 1
1,273
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification and quantitative analysis of flash flood risks for small catchments in China: a new operational modelling approach

Identification et analyse quantitative des risques de crue éclair pour les petits bassins versant chinois : une nouvelle approche de modélisation opérationnelle

, ORCID Icon, , , , , & show all
Article: 2019561 | Published online: 07 Apr 2022

References

  • Alilou, H., Rahmati, O., Singh, V. P., Choubin, B., Pradhan, B., Keesstra, S., Ghiasi, S. S., & Sadeghi, S. H. (2019). Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria. Journal of Environmental Management, 232, 1–13. https://doi.org/10.1016/j.jenvman.2018.11.019.
  • Asian Disaster Reduction Center. (2008). Total disaster risk management: Good practice (1st ed.).
  • Dennis, S. M. (1999). Disasters by design. Joseph Henry Press.
  • Elkhrachy, I. (2015). Flash flood hazard mapping using satellite images and GIS tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). The Egyptian Journal of Remote Sensing and Space Science, 18(2), 261–278. https://doi.org/10.1016/j.ejrs.2015.06.007.
  • Fan, J. Y., Shan, J. S., Guan, M., & Xu, X. S. (2012). Research on analysis and calculation method of critical precipitation of mountain torrents in Jiangxi province. Meteorological Monthly, 38(9), 1110–1114. https://doi.org/10.1007/s11783-011-0280-z.
  • Farzaneh, H., Bahram, C., Amir, M., Narjes, S., Hamid, D., & Ali, H. (2012). Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method. Science of the Total Environment, 717, 135–161. https://doi.org/10.1016/j.scitotenv.2019.135161.
  • Guo, L., Zhang, X. L., Liu, R. H., Liu, Y. S., & Liu, Q. (2017). Achievements and preliminary analysis on China national flash flood disasters investigation and evaluation. Journal of Geo-Information Science, 19(12), 1548–1556. https://doi.org/10.3724/SP.J.1047.2017.01548.
  • Guzzetti, F., Peruccacci, S., Rossi, M., & Colin, P. S. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17. https://doi.org/10.1007/s10346-007-0112-1.
  • Guzzetti, F., Stark, C. P., & Salvati, P. (2005). Evaluation of flood and landslide risk to the population of Italy. Environmental Management, 36(1), 15–36. https://doi.org/10.1007/s00267-003-0257-1.
  • Holub, M., Jürgen, S., & Fuchs, S. (2012). Mountain hazards: Reducing vulnerability by adapted building design. Environmental Earth Sciences, 66(7), 1853–1870. https://doi.org/10.1007/s12665-011-1410-4.
  • Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A. X., & Chen, W. (2018). Application of fuzzy weight of evidence and datamining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 625, 575–588. https://doi.org/10.1016/j.scitotenv.2017.12.256.
  • Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River basin, Malaysia. Environmental Earth Sciences, 67(1), 251–264. https://doi.org/10.1007/s12665-011-1504-z.
  • Sven, F., Jörn, B., & Thomas, G. (2012). Vulnerability assessment in natural hazard and risk analysis: Current approaches and future challenges. Natural Hazards, 64(3), 1969–1975. https://doi.org/10.1007/s11069-012-0352-9.
  • Tan, X. M., Zhang, W. B., Ma, J. M., & Su, Z. C. (2004). Research on regional assessment of flood risk and regionalization mapping in China. Journal of China Institute of Water Resources and Hydropower Research, 2(1), 50–60 https://doi.org/10.1007/s11069-019-03824-9.
  • Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034.
  • Tehrany, M. S., Shabani, F., Jebur, M. N., Hong, H., Chen, W., & Xie, X. (2013). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561. https://doi.org/10.1080/19475705.2017.1362038.
  • Tehrany, M. S., Shabani, F., Jebur, M. N., Hong, H., Chen, W., & Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics, Natural Hazards and Risk, 8(2), 1538–1561 https://doi.org/10.1080/19475705.2017.
  • Totschnig, R., Sedlacek, W., & Fuchs, S. (2011). A quantitative vulnerability function for fluvial sediment transport. Natural Hazards, 58(2), 681–703. https://doi.org/10.1007/s11069-010-9623-5.
  • Wang, Z. Z., & Wang, G. X. (2016). Analysis on flash flood disaster earning warning indicators based on backflow of water level. Jilin Water Resources, 8, 33–35 .
  • Wieczorek, G. F., & Glade, T. (2005). Debris-flow hazards and related phenomena, in Climatic factors influencing occurrence of debris flows. Springer. https://doi.org/10.1007/3-540-27129-5_14.