628
Views
0
CrossRef citations to date
0
Altmetric
Applied & Interdisciplinary Mathematics

Crank–Nicolson method for solving time-fractional singularly perturbed delay partial differential equations

, ORCID Icon & | (Reviewing editor:)
Article: 2293373 | Received 03 Jun 2023, Accepted 07 Dec 2023, Published online: 15 Jan 2024

References

  • Ansari, A. R., Bakr, S. A., & Shishkin, G. I. (2007). A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations. Journal of Computational and Applied Mathematics, 205(1), 552–566. https://doi.org/10.1016/j.cam.2006.05.032
  • Ata, E., & Kıymaz, I. O.(2023). New generalized Mellin transform and applications to partial and fractional differential equations. International Journal of Mathematics and Computer in Engineering, 2023.
  • Atangana, A. (2014). On the singular perturbations for fractional differential equation. Scientific World Journal, 2014, 1–9. https://doi.org/10.1155/2014/752371
  • Bashier, E. B. M., & Patidar, K. C. (2011). A second-order fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation. Journal of Difference Equations and Applications, 17(5), 779–794. https://doi.org/10.1080/10236190903305450
  • Chen, C.-M., Liu, F., Turner, I., & Anh, V. (2007). A Fourier method for the fractional diffusion equation describing sub-diffusion. Journal of Computational Physics, 227(2), 886–897. https://doi.org/10.1016/j.jcp.2007.05.012
  • Choudhary, R., Singh, S., & Kumar, D. (2022). A second-order numerical scheme for the time-fractional partial differential equations with a time delay. Computational and Applied Mathematics, 41(3), 1–28. https://doi.org/10.1007/s40314-022-01810-9
  • Dai, Z., Peng, Y., Mansy, H. A., Sandler, R. H., & Royston, T. J. (2015). A model of lung parenchyma stress relaxation using fractional viscoelasticity. Medical Engineering & Physics, 37(8), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003
  • Daraghmeh, A., Qatanani, N., & Saadeh, A. (2020). Numerical solution of fractional differential equations. Applied Mathematics, 11(11), 1100–1115. https://doi.org/10.4236/am.2020.1111074
  • Doolan, E. P., Miller, J. J., & Schilders, W. H. (1980). Uniform numerical methods for problems with initial and boundary layers. Boole Press.
  • Duressa, G. F., Daba, I. T., & Deressa, C. T. (2023). A systematic review on the solution methodology of singularly perturbed differential difference equations. Mathematics, 11(5), 1108. https://doi.org/10.3390/math11051108
  • Govindarao, L., & Mohapatra, J. (2018). A second order numerical method for singularly perturbed delay parabolic partial differential equation. Engineering Computations, 36(2), 420–444. https://doi.org/10.1108/EC-08-2018-0337
  • Gowrisankar, S., & Natesan, S. (2017). ε-uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations. International Journal of Computer Mathematics, 94(5), 902–921. https://doi.org/10.1080/00207160.2016.1154948
  • Karatay, I., & Bayramoglu, S. R. (2012). An efficient difference scheme for time fractional advection dispersion equations. Applied Mathematical Sciences, 6(98), 4869–4878. https://doi.org/10.1155/2012/548292
  • Kellogg, R. B., & Tsan, A. (1978). Analysis of some difference approximations for a singular perturbation problem without turning points. Mathematics of Computation, 32(144), 1025–1039. https://doi.org/10.1090/S0025-5718-1978-0483484-9
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. North-Holland204.
  • Kumar, D., & Kumari, P. (2019). A parameter-uniform numerical scheme for the parabolic singularly perturbed initial boundary value problems with large time delay. Journal of Applied Mathematics and Computing, 59(1–2), 179–206. https://doi.org/10.1007/s12190-018-1174-z
  • Kumar, D., & Kumari, P. (2020). A parameter-uniform scheme for singularly perturbed partial differential equations with a time lag. Numerical Methods for Partial Differential Equations, 36(4), 868–886. https://doi.org/10.1002/num.22455
  • Kumar, S., Pandey, R. K., Kumar, K., Kamal, S., & Dinh, T. N. (2022). Finite difference–collocation method for the generalized fractional diffusion equation. Fractal and Fractional, 6(7), 387. https://doi.org/10.3390/fractalfract6070387
  • Kumar, K., & Vigo-Aguiar, J. (2021). Numerical solution of time-fractional singularly perturbed convection–diffusion problems with a delay in time. Mathematical Methods in the Applied Sciences, 44(4), 3080–3097. https://doi.org/10.1002/mma.6477
  • Lin, Y., & Xu, C. (2007). Finite difference/spectral approximations for the time-fractional diffusion equation. Journal of Computational Physics, 225(2), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001
  • Liu, X., Abbas, M., Yang, H., Qin, X., & Nazir, T. (2021). Novel finite point approach for solving time-fractional convection-dominated diffusion equations. Advances in Difference Equations, 2021(1), 1–22. https://doi.org/10.1186/s13662-020-03178-8
  • Mbroh, N. A., & Munyakazi, J. B. (2019). A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems. Mathematics and Computers in Simulation, 165, 156–171. https://doi.org/10.1016/j.matcom.2019.03.007
  • Mickens, R. E. (2005). Advances in the applications of nonstandard finite difference schemes. World Scientific.
  • Miller, J. J., O’riordan, E., & Shishkin, G. I. (1996). Fitted numerical methods for singular perturbation problems: Error estimates in the maximum norm for linear problems in one and two dimensions. World Scientific.
  • Negero, N., & Duressa, G. (2022). An efficient numerical approach for singularly perturbed parabolic convection-diffusion problems with large time-lag. Journal of Mathematical Modeling, 10(2), 173–110.
  • Odibat, Z. M., & Momani, S. (2006). Application of variational iteration method to nonlinear differential equations of fractional order. International Journal of Nonlinear Sciences and Numerical Simulation, 7(1), 27–34. https://doi.org/10.1515/IJNSNS.2006.7.1.27
  • Qiu, W., Chen, H., & Zheng, X. (2019). An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional burgers equations. Mathematics and Computers in Simulation, 166, 298–314. https://doi.org/10.1016/j.matcom.2019.05.017
  • Rihan, F. A. (2010). Computational methods for delay parabolic and time-fractional partial differential equations. Numerical Methods for Partial Differential Equations, 26(6), 1556–1571. https://doi.org/10.1002/num.20504
  • Sun, H., Zhang, Y., Baleanu, D., Chen, W., & Chen, Y. (2018). A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation, 64, 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019
  • Tirunehi, A. A., Derese, G. A., & Ayele, M. A. (2023). Singularly perturbed reaction diffusion problem with large spatial delay via non-standard fitted operator method. Research in Mathematics, 10(1). https://doi.org/10.1080/27684830.2023.2171698
  • Turuna, D. A., Woldaregay, M. M., & Duressa, G. F. (2020). Uniformly convergent numerical method for singularly perturbed convection-diffusion problems. Kyungpook Mathematical Journal, 60(3), 629–645.