220
Views
0
CrossRef citations to date
0
Altmetric
Pure Mathematics

A new iterative computational scheme for solving second order (1 + 1) boundary value problems with non-homogeneous Dirichlet conditions

ORCID Icon & ORCID Icon | (Reviewing editor:)
Article: 2330170 | Received 31 Jan 2024, Accepted 05 Mar 2024, Published online: 22 Mar 2024

References

  • Adomian, G., & Rach, R. (1993). Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. Journal of Mathematical Analysis and Applications, 174(1), 118–137. https://doi.org/10.1006/jmaa.1993.1105
  • Ahmad, J., Bajwa, S., & Siddique, I. (2015). Solving the Klein-Gordan equations via differential transform method. Journal of Science and Arts, 15(1).
  • Ahmed, S. A., Qazza, A., & Saadeh, R. (2022). Exact solutions of nonlinear partial differential equations via the new double integral transform combined with iterative method. Axioms, 11(6), 247. https://doi.org/10.3390/axioms11060247
  • Al-Ahmad, S., Anakira, N. R., Mamat, M., Jameel, A. F., Alahmad, R., & Alomari, A. K. (2022). Accurate approximate solution of classes of boundary value problems using modified differential transform method. TWMS Journal of Applied and Engineering Mathematics, 12(4), 1228–1238.
  • Al-Rozbayani, A. M., & Qasim, A. F. (2023). Modified α-parameterized differential transform method for solving nonlinear generalized gardner equation. Journal of Applied Mathematics, 2023, 1–9. https://doi.org/10.1155/2023/3339655
  • Aly, E. H., Ebaid, A., & Rach, R. (2012). Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions. Computers and Mathematics with Applications, 63(6), 1056–1065. https://doi.org/10.1016/j.camwa.2011.12.010
  • Chen, C. O. K., & Ho, S. H. (1999). Solving partial differential equations by two-dimensional differential transform method. Applied Mathematics and Computation, 106(2–3), 171–179. https://doi.org/10.1016/S0096-3003(98)10115-7
  • Dehghan, M., & Shokri, A. (2008). A numerical method for solving the hyperbolic telegraph equation. Numerical Methods for Partial Differential Equations: An International Journal, 24(4), 1080–1093. https://doi.org/10.1002/num.20306
  • Edeki, S. O., Anake, T. A., & Ejoh, S. A. (2019, August). Closed form root of a linear Klein–Gordon equation. Journal of Physics Conference Series, 1299(1), 012138. IOP Publishing: https://doi.org/10.1088/1742-6596/1299/1/012138
  • Hussen, S., Uddin, M., & Karim, M. R. (2022). An efficient computational technique for the analysis of telegraph equation. Journal of Engineering Advancements, 3(3), 104–111. https://doi.org/10.38032/jea.2022.03.005
  • Ikram, S., Saleem, S., & Hussain, M. Z. (2021). Approximations to linear Klein–gordon equations using Haar wavelet. Ain Shams Engineering Journal, 12(4), 3987–3995. https://doi.org/10.1016/j.asej.2021.01.029
  • Jang, B. (2008). Two-point boundary value problems by the extended Adomian decomposition method. Journal of Computational and Applied Mathematics, 219(1), 253–262. https://doi.org/10.1016/j.cam.2007.07.036
  • Kharrat, B. N., & Toma, G. (2020). Differential transform method for solving boundary value problems represented by system of ordinary differential equations of 4 order. World Applied Sciences Journal, 38(1), 25–31.
  • Kreyszig, E. (1991). Introductory functional analysis with applications (Vol. 17). John Wiley and Sons.
  • Lesnic, D., & Elliott, L. (1999). The decomposition approach to inverse heat conduction. Journal of Mathematical Analysis and Applications, 232(1), 82–98. https://doi.org/10.1006/jmaa.1998.6243
  • Lock, C. G. J., Greeff, J., & Joubert, S. (2007). Modelling of Telegraph Equations in Transmission Lines [ Doctoral dissertation], Tshwane University of Technology.
  • Loyinmi, A. C., & Akinfe, T. K. (2020). Exact solutions to the family of fisher’s reaction-diffusion equation using Elzaki homotopy transformation perturbation method. Engineering Reports, 2(2), e12084. https://doi.org/10.1002/eng2.12084
  • Lu, J. (2007). Variational iteration method for solving two-point boundary value problems. Journal of Computational and Applied Mathematics, 207(1), 92–95. https://doi.org/10.1016/j.cam.2006.07.014
  • Mukhtarov, O., Yücel, M., & Aydemir, K. (2021). A new generalization of the differential transform method for solving boundary value problems. Journal of New Results in Science, 10(2), 49–58.
  • Nayar, H., & Phiri, P. A. (2020). A new modification of the differential transform method. Asian Journal of Mathematics and Computer Research, 27(3), 38–51.
  • Nemrat, A. A., Hailat, I., & Zainuddin, Z. (2019, November). Approximate solutions of some linear boundary value problems using the homotopy analysis method combined with sumudu transform. Journal of Physics Conference Series, 1366(1), 012038. IOP Publishing: https://doi.org/10.1088/1742-6596/1366/1/012038
  • Nemrat, A. A., & Zainuddin, Z. (2020). Sumudu transform and variational iteration method to solve two point second order linear boundary value problems. ASM Sciences Journal, 13. https://doi.org/10.32802/asmscj.2020.sm26(4.22)
  • Rashidinia, J., Ghasemi, M., & Jalilian, R. (2010). Numerical solution of the nonlinear Klein–Gordon equation. Journal of Computational and Applied Mathematics, 233(8), 1866–1878. https://doi.org/10.1016/j.cam.2009.09.023
  • Soltanalizadeh, B. (2011). Differential transformation method for solving one-space-dimensional telegraph equation. Computational and Applied Mathematics, 30(3), 639–653. https://doi.org/10.1590/S1807-03022011000300009
  • Wazwaz, A. M. (2008). Analytic study on burgers, Fisher, huxley equations and combined forms of these equations. Applied Mathematics and Computation, 195(2), 754–761. https://doi.org/10.1016/j.amc.2007.05.020
  • Yun, Y. S., Wen, Y., Chaolu, T., & Rach, R. (2019). A segmented Adomian algorithm for the boundary value problem of a second-order partial differential equation on a plane triangle area. Advances in Difference Equations, 2019(1), 1–13. https://doi.org/10.1186/s13662-019-2329-4