871
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Conjugate gradient method for simultaneous identification of the source term and initial data in a time-fractional diffusion equation

ORCID Icon, &
Pages 324-338 | Received 12 Jan 2022, Accepted 01 May 2022, Published online: 16 May 2022

References

  • Berkowitz B, Scher H, Silliman SE. Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour Res. 2000;36:149–158. DOI: 10.1029/1999WR900295.
  • Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys Rep. 2000;339:77. DOI: 10.1016/S0370-1573(00)00070-3.
  • Johansson BT, Lesnic D. A variational method for identifying a spacewise-dependent heat source. IMA J Appl Math. 2007;72:748-–760. DOI: 10.1093/imamat/hxm024.
  • Johansson BT, Lesnic D. A procedure for determining a spacewise dependent heat source and the initial temperature. Appl Anal. 2008;87:265–276. DOI: 10.1080/00036810701858193.
  • Metzler R, Klafter J. Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys Rev E. 2000;61:6308. DOI: 10.1103/PhysRevE.61.6308.
  • Raberto M, Scalas E, Mainardi F. Waiting-times and returns in high-frequency financial data: an empirical study. Phys A: Stat Mech Appl. 2002;314:749–755. Horizons in Complex Systems. DOI: 10.1016/S0378-4371(02)01048-8.
  • Yuste SB, Acedo L, Lindenberg K. Reaction front in an A+B → C reaction-subdiffusion process. Phys Rev E. 2004;69:036126. DOI: 10.1103/PhysRevE.69.036126.
  • Yuste S, Lindenberg K. Subdiffusion-limited reactions. Chem Phys. 2002;284:169–180. Strange Kinetics. DOI: 10.1016/S0301-0104(02)00546-3.
  • Dhawan S, Machado JAT, Brzeziński DW, et al. A Chebyshev wavelet collocation method for some types of differential problems. Symmetry. 2021;13:4. Available from: https://www.mdpi.com/2073-8994/13/4/536.
  • Kumar S, Chauhan R, Abdel-Aty AH, et al. A study on fractional tumour C immune C vitamins model for intervention of vitamins. Results in Physics. 2021;33:2211–3797. DOI: 10.1016/j.rinp.2021.104963.
  • Kumar S, Kumar R, Osman MS, et al. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer Meth Partial Differ Equ. 2021;37:1250–1268. DOI: 10.1002/num.22577.
  • Nisar KS, Ciancio A, Ali KK, et al. On beta-time fractional biological population model with abundant solitary wave structures. Alexandria Eng J. 2022;61:1996–2008. DOI: 10.1016/j.aej.2021.06.106.
  • Iqbal M.A, Wang Y, Miah MM, et al. Study on Date-Jimbo-Kashiwara-Miwa equation with conformable derivative dependent on time parameter to find the exact dynamic wave solutions. Fractal and Fractional. 2022;6:4. Available from: https://www.mdpi.com/2504-3110/6/1/4.
  • Cuahutenango-Barro B, Taneco-Hern???ndez MA, Lv Y-P, et al. Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel. Results in Physics. 2021;25:104148. DOI: 10.1016/j.rinp.2021.104148.
  • Hakimeh M, Sunil K, Shahram R, et al. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos, Solitons, Fractals. 2021;144:0960–0779. DOI: 10.1016/j.chaos.2021.110668.
  • Kumar D.S, Chauhan R, Momani S, et al. Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer Meth Partail Differ Equ. 2020; DOI: 10.1002/num.22707.
  • Hemen D, Sunil Dr K, Ajay K, et al. A study on fractional host-parasitoid population dynamical model to describe insect species. Numer Meth Partail Differ Equ. 2020;37:1673–1962. DOI: 10.1002/num.22603.
  • Kumar A, Kumar S. A study on eco-epidemiological model with fractional operators. Chaos, Solitons, Fractals. 2022;156:0960–0779. DOI: 10.1016/j.chaos.2021.111697.
  • Arqub O.A, Al-Smadi M, Almusawa H, et al. A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves. Alexandria Eng J. 2022;61:5753–5769. DOI: 10.1016/j.aej.2021.12.044.
  • Chi G, Li G, Jia X. Numerical inversions of a source term in the FADE with a Dirichlet boundary condition using final observations. Comput Math Appl. 2011;62:1619–1626. DOI: 10.1016/j.camwa.2011.02.029.
  • Jiang D, Li Z, Liu Y, et al. Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations. Inverse Probl. 2017;33:055013. DOI: 10.1088/1361-6420/aa58d1.
  • Ruan Z, Yang Z, Lu X. An inverse source problem with sparsity constraint for the time-fractional diffusion equation. Adv Appl Math Mech. 2016;8:1-–18. DOI: 10.4208/aamm.2014.m722.
  • Slodička M, Šišková K. An inverse source problem in a semilinear time-fractional diffusion equation. Comput Math Appl. 2016;72:1655–1669. DOI: 10.1016/j.camwa.2016.07.029.
  • Wang W, Yamamoto M, Han B. Numerical method in reproducing kernel space for an inverse source problem for the fractional diffusion equation. Inverse Probl. 2013;29:095009. DOI: 10.1088/0266-5611/29/9/095009.
  • Wei T, Li XL, Li YS. An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 2016;32:085003. DOI: 10.1016/j.amc.2018.05.016.
  • Wei T, Wang J. A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl Numer Math. 2014;78:95–111. DOI: 10.1016/j.apnum.2013.12.002.
  • Zhang Y, Xu X. Inverse source problem for a fractional diffusion equation. Inverse Probl. 2011;27:035010. DOI: 10.1088/0266-5611/27/3/035010.
  • Hào DN, Duc NV, Lesnic D. Regularization of parabolic equations backward in time by a non-local boundary value problem method. IMA J Appl Math. 2010;75:291–315. DOI: 10.1093/imamat/hxp026.
  • Oanh NTN. A splitting method for a backward parabolic equation with time-dependent coefficients. Comput Math Appl. 2013;65:17–28. DOI: 10.1016/j.camwa.2012.10.005.
  • Šišková K, Slodička M. Recognition of a time-dependent source in a time-fractional wave equation. Appl Numer Math. 2017;121:1–17. DOI: 10.1016/j.apnum.2017.06.005.
  • Yan XB, Wei T. Inverse space-dependent source problem for a time-fractional diffusion equation by an adjoint problem approach. J Inverse Ill-Posed Probl. 2019;27:1–16. DOI: 10.1515/jiip-2017-0091.
  • Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl. 2011;382:426–447. DOI: 10.1016/j.jmaa.2011.04.058.
  • Li YS, Sun LL, Zhang ZQ, et al. Identification of the time-dependent source term in a multi-term time-fractional diffusion equation. Numer Algorithms. 2019;82:1279–1301. DOI: 10.1007/s11075-019-00654-5.
  • Djennadi S, Shawagfeh N, Inc M, et al. The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Physica Scripta. 2021;96:094006. DOI: 10.1088/1402-4896/ac0867.
  • Wang B, Yang B, Xu M. Simultaneous identification of initial field and spatial heat source for heat conduction process by optimizations. Adv Difference Equ.. 2019;2019:1–6. DOI: 10.1186/s13662-019-2344-5.
  • Ruan Z, Yang JZ, Lu X. Tikhonov regularisation method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation. East Asian J Appl Math. 2015;5:273–300. DOI: 10.4208/eajam.310315.030715a.
  • Wen J, Liu ZX, Yue CW, et al. Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation. J Appl Math Comput. 2021; 1–32. DOI: 10.1007/s12190-021-01656-0.
  • Daniel JW. The conjugate gradient method for linear and nonlinear operator equations. SIAM J Numer Anal. 1967;4:10–26. DOI: 10.1137/0704002.
  • Daniel JW. The conjugate gradient method for linear and nonlinear operator equations [thesis (PhD)]. ProQuest LLC. Ann Arbor, MI: Stanford University; 1965.
  • Podlubny I. Fractional differential equations. Academic Press, Inc.: San Diego, CA; 1999. (Mathematics in Science and Engineering; 198).
  • Hanke M, Hansen PC. Regularization methods for large-scale problems. Surveys Math Indust. 1993;3:253–315.