932
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Groundwater flow in karstic aquifer: analytic solution of dual-porosity fractional model to simulate groundwater flow

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 598-608 | Received 04 Apr 2022, Accepted 18 Aug 2022, Published online: 04 Sep 2022

References

  • Mohrlok U, Sauter M. Modelling groundwater flow in a karst terrain using discrete and double-continuum approaches. Importance of spatial and temporal distribution of recharge. Proceedings of the 12th International Congress of Speleology; 6th Conference on Limestone Hydrology and Fissured Media; Vol. 2; 1997. p. 167–170.
  • Mohrlok U, Teutsch G. Double-continuum porous equivalent (DCPE) versus discrete modelling in karst terraces. Karst Waters & Environmental Impacts; 1997. p. 319–326.
  • Cornaton F, Perrochet P. Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling. J Hydrol. 2002;262(1–4):165–176.
  • Warren JE, Root PJ. The behaviour of naturally fractured reservoirs. Soc Pet Eng J. 1963;3:245–255.
  • Kazemi H. Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. Soc Pet Eng J. 1969;246:451–462.
  • Moench AF. Double porosity models for a fractured groundwater reservoir with fracture skin. Water Resour Res. 1984;20(7):831–846.
  • Barenblatt GI, Zheltov IP, Kochina IN. Basic concepts in the theory of seepage of homogeneous liquids in fractured rocks (strata). J Appl Math Mech. 1960;24(5):1286–1303.
  • Lang U, Keim B. Modelling flow and transport processes in fractured or karstified media with a double continuum model. Abstracts of Conference MODFLOW' 98; Golden, CO; 1998. p. 329–336.
  • Moutsopoulos KN, Konstantinidis AA, Meladiotis ID, et al. On the numerical solution and qualitative behaviour of double porosity aquifers. Transp Porous Media. 2001;42:265–292.
  • Pride SR, Berryman JG. Linear dynamics of double porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys Rev E. 2003;68(36603):1–10.
  • Agarwal R, Yadav MP, Baleanu D, et al. Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics. 2020;5(2):1062–1073.
  • Atangana A, Alkahtani BST. New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative. Arab J Geosci. 2016;9(1):8.
  • Atangana A. On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation. Appl Math Comput. 2016;273:948–956.
  • Baleanu D, Rezapour S, Saberpour Z. On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation. Boundary Value Problems. 2019;2019:79.
  • Atangana A, Baleanu D. Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J Eng Mech. 2017;143(5):D4016005.
  • Yavuz M, Sene N, Yıldız M. Analysis of the influences of parameters in the fractional second-grade fluid dynamics. Mathematics. 2022;10(7):1125.
  • Hammouch Z, Yavuz M, Özdemir N. Numerical solutions and synchronization of a variable-order fractional chaotic system. Math Model Numer Simul Appl. 2021;1(1):11–23.
  • Akgül EK, Akgül A, Yavuz M. New illustrative applications of integral transforms to financial models with different fractional derivatives. Chaos, Solitons & Fractals. 2021;146:110877.
  • Baleanu D, Etemad S, Pourrazi S, et al. On the new fractional hybrid boundary value problems with three-point integral hybrid conditions. Adv Differ Equ. 2019;473:0.
  • Baleanu D, Hassan Abadi M, Jajarmi A, et al. A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects. Alexandria Eng J. 2022;61(6):4779–4791.
  • Qureshi S, Rangaig NA, Baleanu D. New numerical aspects of Caputo-Fabrizio fractional derivative operator. Mathematics. 2019;7(4):374.
  • Jajarmi A, Baleanu D, Zarghami Vahid K, et al. A new and general fractional Lagrangian approach: a capacitor microphone case study. Results Phys. 2021;31:104950.
  • Thabet STM, Etemad S, Rezapour S. On a coupled Caputo conformable system of pantograph problems. Turkish J Math. 2021;45:496.519.
  • Matar MM, Abbas MI, Alzabut J, et al. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv Differ Equ. 2021;68:0.
  • Ahmad M, Imran MA, Aleem M, et al. A comparative study and analysis of natural convection flow of MHD non-Newtonian fluid in the presence of heat source and first-order chemical reaction. J Therm Anal Calorim. 2019;137:1783–1796.
  • Aleem M, Asjad MI, Shaheen A, et al. MHD influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos Solitons Fractals. 2020;130:109437.
  • Asjad MI, Shah NA, Aleem M, et al. Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo-Fabrizio fractional derivatives: a comparison. Eur Phys J Plus. 2017;132:340.
  • Yang X, Srivastava HM, Tenreiro Machado JA. A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. Therm Sci. 2015;20(2):753–756.
  • Yang X, Feng Y, Cattani C, et al. Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math Methods Appl Sci. 2019;42(11):4054–4060.
  • Yang X, Gao F, Ju Y, et al. Fundamental solutions of the general fractional-order diffusion equations. Math Methods Appl Sci. 2018;41(18):9312–9320.
  • Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl. 2015;2:73–85.
  • Cornaton F. Utilisation de modèles continu discret et à double continuum pour l'analyse des réponses globales de l' aquifère karstique. Essai d'identification des paramètres [Master Thesis]. University of Neuchâtel; 1999. p. 83.