770
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the solution of generalized time-fractional telegraphic equation

, & ORCID Icon
Article: 2169685 | Received 04 Nov 2022, Accepted 10 Jan 2023, Published online: 10 Feb 2023

References

  • Kilicman A, Shokhanda R, Goswami P. On the solution of (n + 1)-dimensional fractional M-Burgers equation. Alex Eng J. 2020;60:1165–1172. DOI:10.1016/j.aej.2020.10.040
  • Shokhanda R, Goswami P. Solution of generalized fractional Burgers equation with a nonlinear term. Int J Appl Comput Math. 2022;8:Article ID 235, 14 pages. DOI:10.1007/s40819-022-01449-4
  • Shokhanda R, Goswami P, Napoles Valdes JE. Analytical solution of generalized diffusion-like equation of fractional order. Proc Inst Math Mech Nat Acad Sci Azerbaijan. 2022;48:Special Issue, pages 168–177. DOI:10.30546/2409-4994.48.2022.168177
  • Kumar S, Kumar R, Osman MS, et al. A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numerical Methods Partial Differ Equ. 2021;37(2):1250–1268. DOI:10.1002/num.22577
  • Khan MA, Ullah S, Kumar S. A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur Phys J Plus. 2021;136:Article 168. DOI:10.1140/epjp/s13360-021-01159-8
  • Kumar S, Kumar A, Samet B, et al. A study on fractional host-parasitoid population dynamical model to describe insect species. Numerical Methods Partial Differ Equ. 2021;37(2):1673–1692. DOI:10.1002/num.22603
  • Attia RAM, Zhang X, Khater MMA. Analytical and hybrid numerical simulations for the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain. Res Phys. 2022;43:Article ID 106045. DOI:10.1016/j.rinp.2022.106045
  • Khater MA, Lu D, Attia RAM. Lump soliton wave solutions for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation. Mod Phys Lett B. 2019;33(18):Article ID 1950199. DOI:10.1142/S0217984919501999, DOI:10.1142/S0217984921506144
  • Khater MMA. Two-component plasma and electron trapping's influence on the potential of a solitary electrostatic wave with the dust-ion-acoustic speed. J Ocean Eng Sci. In Press. DOI:10.1016/j.joes.2022.02.006
  • Khater MMA, Lu D. Diverse soliton wave solutions of for the nonlinear potential Kadomtsev–Petviashvili and Calogero–Degasperis equations. Res Phys. 2022;33:Article ID 105116. DOI:10.1016/j.rinp.2021.105116
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999. (Mathematics in Science and Engineering, Vol. 198).
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: Elsevier (North-Holland) Science Publishers; 2006. (North-Holland Mathematical Studies; Vol. 204).
  • Kurt Bahşı A, Yalçınbaş S. A new algorithm for the numerical solution of telegraph equations by using fibonacci polynomials. Math Comput Appl. 2016;21(2):16. DOI:10.3390/mca21020015
  • Cascaval RC, Eckstein EC, Frota CL, et al. Fractional telegraph equation. J Math Anal Appl. 2001;276:145–159.
  • Orsingher E, Zhao X. The space-fractional telegraph equation and the related fractional telegraph process. Chinese Ann Math Ser B. 2003;24(1):45–56.
  • Momani S. Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl Math Comput. 2005;170:1126–1134.
  • Figueiredo Camargo R, Chiacchio AO, Capelas de Oliveira E. Differentiation to fractional orders and the fractional telegraph equation. J Math Phys. 2008;49(3):12 pages, Article ID 033505.
  • Zhao Z, Li C. Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl Math Comput. 2012;219(6):2975–2988. DOI:10.1016/j.amc.2012.09.022
  • Kumar S. A new analytical modelling for fractional telegraph equation via laplace transform. Appl Math Model. 2014;38(13):3154–3163. DOI:10.1016/j.apm.2013.11.035
  • Kumar A, Bhardwaj A, Dubey S. A local meshless method to approximate the time-fractional telegraph equation. Eng Comput. 2020;37:3473–3488. DOI:10.1007/s00366-020-01006-x
  • Atangana A. On the stability and convergence of the time-fractional variable order telegraph equation. J Comput Phys. 2015;293:104–114. DOI:10.1016/j.jcp.2014.12.043
  • Huang F. Analytical solution for the time-fractional telegraph equation. J Appl Math. 2009;2009:Article ID 890158, 9 pages. DOI:10.1155/2009/890158
  • Wang Y-L., Du M-J, Temuer C-L, et al. Using reproducing kernel for solving a class of time-fractional telegraph equation with initial value conditions. Int J Comput Math. 2017;95(8):1609–1621.
  • Ferreira M, Rodrigues MM, Vieira N. First and second fundamental solutions of the time-fractional telegraph equation with Laplace or Dirac operators. Adv Appl Clifford Algebras. 2018;28(2):Article 42. DOI:10.1007/s00006-018-0858-7
  • Chaurasia VBL, Dubey RS. Analytical solution for the generalised time-fractional telegraphic equation. Fract Differ Calc. 2013;3(1):21–29. DOI:10.7153/fdc-03-02
  • Miller KS, Ross B. An introduction to the fractional calculus and fractional differential equations. New York (NY): John Willey & Sons; 1993.
  • Fujita H. the exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part I. Text Res J. 1952;22(11):757–760. DOI:10.1177/004051755202201106
  • Fujita H. The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part II. Text Res J. 1952;22(12):823–827. DOI:10.1177/004051755202201209
  • Fujita H. The exact pattern of a concentration-dependent diffusion in a semi-infinite medium, part III. Text Res J. 1954;24(3):234–240. DOI:10.1177/004051755402400304
  • He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng. 1999;178:257–262.
  • Johnston SJ, Jafari H, Moshokoa SP, et al. Laplace homotopy perturbation method for Burgers equation with space-and time-fractional order. Open Phys. 2016;14(1):247–252. DOI:10.1515/phys-2016-0023
  • Mishra HK, Tripathi R. Homotopy perturbation method of delay differential equation using He's polynomial with Laplace transform. Proc Natl Acad Sci India Sec A Phys Sci. 2019;90:289–298. DOI:10.1007/s40010-018-0581-8
  • Wazwaz AM. The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations. Comput Math Appl. 2007;54(7–8):933–939. DOI:10.1016/j.camwa.2006.12.039