512
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vallée-Poussin theorem for Hadamard fractional functional differential equations

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2259057 | Received 20 Mar 2023, Accepted 09 Sep 2023, Published online: 09 Oct 2023

References

  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: Elsevier Science B.V.; 2006. (North-Holland Mathematics Studies; Vol. 204).
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press, Inc.; 1999. (Mathematics in Science and Engineering; Vol. 198). An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.
  • Li C, Li Z. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J Nonlinear Sci. 2021;31(2):1–60. Paper No. 31. doi: 10.1007/s00332-021-09691-8
  • Ahmad B, Alsaedi A, Ntouyas SK, et al. Hadamard-type fractional differential equations, inclusions and inequalities. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-52141-1
  • Garra R, Orsingher E, Polito F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics. 2018;6(1):1–10. doi:10.3390/math6010004. Art. Number 4. https://www.mdpi.com/2227-7390/6/1/4
  • Garra R, Mainardi F, Spada G. A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fract. 2017;102:333–338. doi:10.1016/j.chaos.2017.03.032
  • Lomnitz C. Creep measurements in igneous rocks. J Geol. 1956;64(5):473–479. doi:10.1086/626379
  • Jeffreys H. A modification of Lomnitz's law of creep in rocks. Geophys J Int. 1958;1(1):92–95. doi:10.1111/j.1365-246X.1958.tb00037.x
  • Mainardi F, Spada G. On the viscoelastic characterization of the Jeffreys–Lomnitz law of creep. Rheol Acta. 2012;51(9):783–791. doi:10.1007/s00397-012-0634-x
  • Padhi S, Graef JR, Pati S. Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann–Stieltjes integral boundary conditions. Fract Calc Appl Anal. 2018;21(3):716–745. doi:10.1515/fca-2018-0038
  • Abbas S, Benchohra M, Sivasundaram S, et al. Existence and oscillatory results for Caputo–Fabrizio fractional differential equations and inclusions. Nonlinear Stud. 2021;28(1):283–298.
  • Aibout S, Abbas S, Benchohra M, et al. A coupled Caputo–Hadamard fractional differential system with multipoint boundary conditions. Dyn Contin Discrete Impuls Syst Ser A Math Anal. 2022;29(3):191–208.
  • Quan H, Liu X, Jia M. The method of upper and lower solutions for a class of fractional differential coupled systems. Adv Differ Equ. 2021;1–18 . Paper No. 263. doi:10.1186/s13662-021-03419-4
  • Liu X, Jia M. The method of lower and upper solutions for the general boundary value problems of fractional differential equations with p-Laplacian. Adv Differ Equ. 2018;1–15. Paper No. 28. doi:10.1186/s13662-017-1446-1
  • Domoshnitsky A, Srivastava SN, Padhi S. Existence of solutions for a higher order Riemann–Liouville fractional differential equation by Mawhin's coincidence degree theory. Math Methods Appl Sci. 2023;46(11):12018–12034. doi:10.1002/mma.v46.11
  • Baitiche Z, Guerbati K, Hammouche H, et al. Sequential fractional differential equations at resonance. Funct Differ Equ. 2019;26(3–4):167–184.
  • Rawani MK, Verma AK, Cattani C. A novel hybrid approach for computing numerical solution of the time-fractional nonlinear one and two-dimensional partial integro-differential equation. Commun Nonlinear Sci Numer Simul. 2023;118:1–20. Paper No. 106986. doi:10.1016/j.cnsns.2022.106986
  • Wanassi OK, Bourguiba R, Torres DFM. Existence and uniqueness of solution for fractional differential equations with integral boundary conditions and the Adomian decomposition method. Math Methods Appl Sci. 2022 Nov. doi: 10.1002/mma.8880
  • Agarwal RP, Bohner M, Özbekler A. Lyapunov inequalities and applications. Cham: Springer; 2021. doi:10.1007/978-3-030-69029-8
  • Srivastava SN, Pati S, Padhi S, et al. Lyapunov inequality for a Caputo fractional differential equation with Riemann–Stieltjes integral boundary conditions. Math Methods Appl Sci. 2023;46:13110–13123. doi:10.1002/mma.v46.12
  • Zohra BF, Benaouda H, Mokhtar K. Lyapunov-and Hartman–Wintner-type inequalities for a nonlinear fractional BVP with generalized ψ-Hilfer derivative. Math Methods Appl Sci. 2021;44(3):2637–2649. doi:10.1002/mma.v44.3
  • Łupińska B, Odzijewicz T. A Lyapunov-type inequality with the Katugampola fractional derivative. Math Methods Appl Sci. 2018;41(18):8985–8996. doi:10.1002/mma.v41.18
  • Ma Q, Ma C, Wang J. A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative. J Math Inequal. 2017;11(1):135–141. doi:10.7153/jmi-11-13
  • Dhar S. On linear and non-linear fractional hadamard boundary value problems. Differ Equ Appl. 2018;10:329–339.
  • Abbas MI, Fečkan M. Investigation of an implicit Hadamard fractional differential equation with Riemann–Stieltjes integral boundary condition. Math Slovaca. 2022;72(4):925–934. doi:10.1515/ms-2022-0063
  • Hristova S, Benkerrouche A, Souid MS, et al. Boundary value problems of Hadamard fractional differential equations of variable order. Symmetry. 2021;13(5):1–16. doi:10.3390/sym13050896Art. Number 896. https://www.mdpi.com/2073-8994/13/5/896.
  • Agarwal RP, Ntouyas SK, Ahmad B, et al. Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments. Adv Differ Equ. 2016:1–15. Paper No. 92. doi:10.1186/s13662-016-0810-x.
  • Subramanian M, Alzabut J, Baleanu D, et al. Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions. Adv Differ Equ. 2021;2021(1):1–46. doi:10.1186/s13662-021-03414-9
  • Abbas S, Benchohra M, Lazreg JE, et al. A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos Solitons Fract. 2017;102:47–71. doi:10.1016/j.chaos.2017.03.010
  • Jiang J, O'Regan D, Xu J, et al. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J Inequal Appl. 2019;2019(1):1–18. doi:10.1186/s13660-019-2156-x
  • Xu J, Liu J, O'Regan D. Solvability for a Hadamard-type fractional integral boundary value problem. Nonlinear Anal Model Control. 2023;28:1–25.
  • Almeida R, Kamocki R, Malinowska AB, et al. Optimal leader-following consensus of fractional opinion formation models. J Comput Appl Math. 2021;381:1–16. Paper No. 112996.. doi:10.1016/j.cam.2020.112996
  • Almeida R, Malinowska AB, Odzijewicz T. Optimal leader-follower control for the fractional opinion formation model. J Optim Theory Appl. 2019;182(3):1171–1185. doi:10.1007/s10957-018-1363-9
  • Almeida R, Kamocki R, Malinowska AB, et al. On the existence of optimal consensus control for the fractional Cucker–Smale model. Arch Control Sci. 2020;30(66(4)):625–651.
  • Almeida R, Kamocki R, Malinowska AB, et al. On the necessary optimality conditions for the fractional Cucker–Smale optimal control problem. Commun Nonlinear Sci Numer Simul. 2021;96:1–22. Paper No. 105678. doi:10.1016/j.cnsns.2020.105678
  • Berezansky L, Domoshnitsky A, Koplatadze R. Oscillation, nonoscillation, stability and asymptotic properties for second and higher order functional differential equations. Boca Raton (FL): CRC Press; 2020.
  • Azbelev NV, Domoshnitsky AI. On de la Vallée Poussin's differential inequality. Differ Uravn. 1986;22(12):2041–2045. 2203.
  • Azbelev NV, Domoshnitsky AI. On the question of linear differential inequalities. I. Differ Uravn. 1991;27(3):376–384. 547.
  • Azbelev NV, Domoshnitsky AI. On the question of linear differential inequalities. II. Differ Uravn. 1991;27(6):923–931. 1098.
  • Domoshnitsky A, Padhi S, Srivastava SN. Vallée-Poussin theorem for fractional functional differential equations. Fract Calc Appl Anal. 2022;25(4):1630–1650. doi:10.1007/s13540-022-00061-z
  • Srivastava SN, Domoshnitsky A, Padhi S, et al. Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem. Arch Math. 2023;59(1):117–123.
  • Bohner M, Domoshnitsky A, Padhi S, et al. Vallée-Poussin theorem for equations with Caputo fractional derivative. Math Slovaca. 2023;73(3):713–728. doi:10.1515/ms-2023-0052
  • Kilbas AA. Hadamard-type fractional calculus. J Korean Math Soc. 2001;38(6):1191–1204.
  • Krasnosel′skiı MA, Vaınikko GM, Zabreıko PP, et al. Approximate solution of operator equations. Groningen: Wolters-Noordhoff Publishing; 1972. Translated from the Russian by D. Louvish.