385
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Infinite-time blowup and global solutions for a semilinear Klein–Gordan equation with logarithmic nonlinearity

, , &
Article: 2270134 | Received 11 Apr 2023, Accepted 06 Oct 2023, Published online: 19 Oct 2023

References

  • Drazin PJ, Johnson RS. Solitons: an introduction. Cambridge, UK: Cambridge University Press; 1989.
  • Duncany DB. Symplectic finite difference approximations of the nonlinear Klein–Gordon equation. SIAM J Numer Anal. 1997;34:1742–1760. doi: 10.1137/S0036142993243106
  • Perring JK, Skyrme TH. A model unified field equation. Nucl Phys. 1962;31:550–555. doi: 10.1016/0029-5582(62)90774-5
  • Keller JB. Electrodynamics. I. The equilibrium of a charged gas in a container. J Rat Mech Anal. 1956;5:715–724.
  • Bhrawy AH, Obaid M. New exact solutions for the Zhiber–Shabat equation using the extended F-expansion method. Life Sci J. 2012;4:9.
  • Wazwaz AM. The tanh and the Sine–Cosine methods for compact and noncompact solutions of the nonlinear Klein–Gordon equation. Appl Math Comput. 2005;167:1179–1195.
  • Lee TD. Particle physics and introduction to field theory. New York: Harwood Academic Publishers; 1981.
  • Shatah J. Stable standing waves of nonlinear Klein–Gordon equations. Commun Math Phys. 1983;91:313–327. doi: 10.1007/BF01208779
  • Levine HA. Instability and nonexistence of global solutions of nonlinear wave equations of the form Putt=−Au+Fu. Trans Am Math Soc. 1974;192:1–12.
  • Ball JM. Finite time blowup in nonlinear problems, nonlinear evolution equations. New York, NY, USA: Academic Press; 1978. p. 189–205.
  • Payne LE, Sattinger DH. Saddle points and instability of nonlinear hyperbolic equations. Isr J Math. 1975;22(3-4):273–303. doi: 10.1007/BF02761595
  • Zhang M, Zhao Q, Liu Y, et al. Finite time blowup and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electron Res Arch. 2020;28(1):369–381. https://doi.org/10.3934/era.202002
  • Gan ZH, Zhang J. Sharp conditions for global existence for nonlinear Klein–Gordon equations. Acta Math Sin Chinese Ser. 2005;48(2):311–318.
  • Khuddush M, Prasad KR, Bharathi B. Global existence and blowup of solutions for a semilinear Klein–Gordon equation with the product of logarithmic and power-type nonlinearity. Ann Univ Ferrara. 2022;68:187–201. https://doi.org/10.1007/s11565-022-00395-9
  • Huang W, Zhang J. Instability of the standing waves for nonlinear Klein–Gordon equations with damping term. Appl Math Comput. 2009;213(2):522–528. doi: 10.1016/j.cam.2008.08.037
  • Ha TG, Park JY. Global existence and uniform decay of a damped Klein–Gordon equation in a noncylindrical domain. Nonlinear Anal Theory Methods Appl. 2011;74(2):577–584. doi: 10.1016/j.na.2010.09.011
  • Nakao M. Existence of global decaying solutions to the exterior problem for the Klein–Gordon equation with a nonlinear localized dissipation and a derivative nonlinearity. J Differ Equ. 2013;255(11):3940–3970. doi: 10.1016/j.jde.2013.07.060
  • Buljan H, Siber A, Soljacic M, et al. Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. Phys Rev E. 2003;68(3):036607. doi: 10.1103/PhysRevE.68.0366076 pp.
  • De Martino S, Falanga M, Godano C, et al. Logarithmic Schrodinger-like equation as a model for magma transport. Europhys Lett. 2003;63(3):472–475. doi: 10.1209/epl/i2003-00547-6
  • Eskandari Z, Avazzadeh Z, Ghaziani RK, et al. Dynamics and bifurcations of a discrete-time Lotka Volterra model using nonstandard finite difference discretization method. Math Methods Appl Sci; 2022. https://doi.org/10.1002/mma.8859.
  • He Q, Xia P, Hu C, et al. Public information, actual intervention and inflation expectations. Transform Bus Econ. 2022;21(3C):644–666.
  • He Q, Zhang X, Xia P, et al. A comparison research on dynamic characteristics of Chinese and American energy prices. J Glob Inf Manag. 2023;31(1):1–16. doi: 10.4018/JGIM
  • Khater MMA. Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int J Mod Phys B. 2023;37(09):2350083. doi: 10.1142/S0217979223500832
  • Khater MMA, Alfalqi SH, Alzaidi JF, et al. Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a quasi-monochromatic medium. Results Phys. 2023;46:106312. doi: 10.1016/j.rinp.2023.106312
  • Khater MMA. Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int J Mod Phys B. 2023;37(08):2350071. doi: 10.1142/S0217979223500716
  • Khater MMA. Nonlinear elastic circular rod with lateral inertia and finite radius: dynamical attributive of longitudinal oscillation. Int J Mod Phys B. 2023;37(06):2350052. doi: 10.1142/S0217979223500522
  • Khater MMA, Zhang X, Attia RAM. Accurate computational simulations of perturbed Chen–Lee–Liu equation. Results Phys. 2023;45:106227. doi: 10.1016/j.rinp.2023.106227
  • Khuddush M, Prasad KR. Existence of infinitely many positive radial solutions for an iterative system of nonlinear elliptic equations on an exterior domain. Afr Mat. 2022;33:93. doi: 10.1007/s13370-022-01027-3
  • Khuddush M, Prasad KR, Bharathi B. Global existence and blowup of solutions for a p-Kirchhoff type parabolic equation with logarithmic nonlinearity. J Elliptic Parabol Equ. 2022;8:919–938. https://doi.org/10.1007/s41808-022-00181-w
  • Khuddush M, Prasad KR, Bharathi B. Denumerably many positive radial solutions for the iterative system of Minkowski-curvature equations. Int. J. Nonlin. Anal. Appl.. 2022;13(1):3613–3632. https://doi.org/10.22075/ijnaa.2021.23621.2567
  • Khuddush M, Prasad KR. Positive solutions for an iterative system of nonlinear elliptic equations. Bull Malays Math Sci Soc. 2022;45:245–272. https://doi.org/10.1007/s40840-021-01183-y
  • Krolikowski W, Edmundson D, Bang O. Unified model for partially coherent solitons in logarithmically nonlinear media. Phys Rev E. 2000;61:3122–3126. doi: 10.1103/PhysRevE.61.3122
  • Li B, Liang H, Shi L, et al. Multiple and generic bifurcation analysis of a discrete Hindmarsh–Rose model. Chaos Solit Fractals. 2021;146:110856. doi: 10.1016/j.chaos.2021.110856
  • Li B, Liang H, Shi L, et al. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solit Fractals. 2022;156:111860. doi: 10.1016/j.chaos.2022.111860
  • Li B, Zhang Y, Li X, et al. Bifurcation analysis and complex dynamics of a Kopel triopoly model. J Comput Appl Math. 2023;426:115089. doi: 10.1016/j.cam.2023.115089
  • Prasad KR, Khuddush M, Bharathi B. Denumerably many positive radial solutions for the iterative system of elliptic equations in an annulus. Palest J Math. 2022;11(1):549–559.
  • Barrow JD, Parsons P. Inflationary models with logarithmic potentials. Phys Rev D. 1995;52:5576–5587. doi: 10.1103/PhysRevD.52.5576
  • Enqvist K, McDonald J. Q-balls and baryogenesis in the MSSM. Phys Lett B. 1998;425:309–321. doi: 10.1016/S0370-2693(98)00271-8
  • Linde A. Strings, textures, inflation and spectrum bending. Phys Lett B. 1992;284(3-4):215–222. doi: 10.1016/0370-2693(92)90423-2
  • Górka P. Logarithmic Klein–Gordon equation. Acta Phys Polon B. 2009;40:59–66.
  • Bia lynicki-Birula I, Mycielski J. Wave equations with logarithmic nonlinearities. Bull Acad Polon Sci Ser Sci Math Astronom Phys. 1975;23(4):461–466.
  • Bia lynicki-Birula I, Mycielski J. Nonlinear wave mechanics. Ann Phys. 1976;100(1-2):62–93. doi: 10.1016/0003-4916(76)90057-9
  • Hiramatsu T, Kawasaki M, Takahashi F. Numerical study of Q-ball formation in gravity mediation. J Cosmol Astropart Phys. 2010;2010(6):008. doi: 10.1088/1475-7516/2010/06/008
  • Han X. Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics. Bull Korean Math Soc. 2013;50(1):275–283. doi: 10.4134/BKMS.2013.50.1.275
  • Lian W, Ahmed MS, Xu R. Global existence and blow up solution for semilinear hyperbolic equation with logarithmic nonlinearity. Nonlinear Anal. 2019;184:239–257. doi: 10.1016/j.na.2019.02.015
  • Peng J, Zhou J. Global existence and blowup of solutions to a semilinear heat equation with logarithmic nonlinearity. Appl Anal. 2019. https://doi.org/10.1080/00036811.2019.1698726.
  • Chen H, Luo P, Liu G. Global solution and blowup of a semilinear heat equation with logarithmic nonlinearity. J Math Anal Appl. 2015;422(1):84–98. doi: 10.1016/j.jmaa.2014.08.030
  • Gross L. Logarithmic Sobolev inequalities. Amer J Math. 1975;97(4):1061–1083. doi: 10.2307/2373688
  • Lieb EH, Loss M. Analysis. 2nd ed., Providence (RI): American Mathematical Society; 2001. (Graduate studies in mathematics; Vol. 14).
  • Abu-Shady M, Kaabar MKA. A novel computational tool for the fractional order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative, computational and mathematical methods in medicine; 2022. Article ID 2138775. https://doi.org/10.1155/2022/2138775.
  • Alzabut J, Selvam A, Dhineshbabu R, et al. The existence, uniqueness, and stability analysis of the discrete fractional three-point boundary value problem for the elastic beam equation. Symmetry. 2021;13(5):789. doi: 10.3390/sym13050789
  • Houas M, Martinez F, Samei ME, et al. Uniqueness and Ulam–Hyers–Rassias stability results for sequential fractional pantograph q-differential equations. J Inequal Appl. 2022;2022(1):1–24. doi: 10.1186/s13660-022-02828-7
  • Matar NM, Abbas MI, Alzabut J, et al. Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv Differ Equ. 2021;2021(1):1–18. doi: 10.1186/s13662-020-03162-2