285
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Series involving degenerate harmonic numbers and degenerate Stirling numbers

, , &
Article: 2297045 | Received 14 Jul 2023, Accepted 13 Dec 2023, Published online: 21 Jan 2024

References

  • Praveen A, Takao K. A short note on Laguerre polynomials. preprint, 2020. arXiv:2004.05996.
  • Lehmer DH. Interesting series involving the central binomial coefficient. Am Math Mon. 1985;92:449–457. doi: 10.1080/00029890.1985.11971651.
  • Simsek Y. Combinatorial sums and binomial identities associated with the beta-type polynomials. Hacet J Math Stat. 2018;47:1144–1155. doi: 10.15672/HJMS.2017.505.
  • Kim DS, Kim T. Normal ordering associated with λ-Whitney numbers of the first kind in λ-shift algebra. Russ J Math Phys. 2023;30:310–319. doi: 10.1134/S1061920823030044.
  • Kim T, Kim DS. Combinatorial identities involving degenerate harmonic and hyperharmonic numbers. Adv Appl Math. 2023;148:102535–102550. doi: 10.1016/j.aam.2023.102535.
  • Kim T, Kim DS. Some identities on degenerate hyperharmonic numbers. Georgian Math J. 2023;30:255–262. doi: 10.1515/gmj-2022-2203.
  • Tuladhar BM, López-Bonilla J, López-Vázquez R. Identities for harmonic numbers and binomial relations via Legendre polynomials. J Sci Eng Technol. 2017;13:92–97. doi: 10.3126/KUSET.V13I2.21287.
  • López-Bonilla J, López-Vázquez R. Harmonic and Stirling numbers. Afr J Basic & Appl Sci. 2020;12:32–33. doi: 10.5829/idosi.ajbas.2020.32.33.
  • Kim DS, Kim H, Kim T. Some identities on generalized harmonic numbers and generalized harmonic functions. Demonstr Math. 2023;56:1–9. doi: 10.1515/dema-2022-0229.
  • Kim T, Kim DS, Kim HK. Some identities of degenerate harmonic and degenerate hyperharmonic numbers arising from umbral calculus. Open Math. 2023;21:20230124–20230136. doi: 10.1515/math-2023-0124.
  • Kim T, Kim DS. Some relations of two type 2 polynomials and discrete harmonic numbers and polynomials. Symmetry. 2020;12:905–921. doi: 10.3390/sym12060905.
  • Wang R, Wuyungaowa. Generalized harmonic numbers Hn,k,r(α,β) with combinatorial sequences. J Appl Math Phys. 2022;10(5):1602–1618. doi: 10.4236/jamp.2022.105111.
  • Kim T, Kim DS. On some degenerate differential and degenerate difference operators. Russ J Math Phys. 2022;29:37–46. doi: 10.1134/S1061920822010046.
  • Kim T, Kim DS. Some identities on degenerate harmonic and degenerate higher-order harmonic numbers. preprint, 2018. arXiv:2308.15013, p. 1–11.
  • Dolgy DV, Kim DS, Kim HK, et al. Degenerate harmonic and hyperharmonic numbers. Proc Jangjeon Math Soc. 2023;26:259–268. doi: 10.17777/pjms2023.26.3.259.
  • Aydin MS, Acikgoz M, Araci S. A new construction on the degenerate Hurwitz-zeta function associated with certain applications. Proc Jangjeon Math Soc. 2020;25:195–203. doi: 10.17777/pjms2022.25.2.195.
  • Kim T, Kim DS. Some results on degenerate Fubini and degenerate Bell polynomials. Appl Anal Discret Math. 2022;2022:35–35.
  • Khan WA, Muhyi A, Ali R, et al. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Math. 2021;6:12680–12697. doi: 10.3934/math.2021731.
  • Kim DS, Kim T. A note on a new type of degenerate Bernoulli numbers. Russ J Math Phys. 2020;27:227–235. doi: 10.1134/S1061920820020090.
  • Comtet L. Advanced combinatorics. The art of finite and infinite expansions. Revised and enlarged edition. Dordrecht: D. Reidel Publishing Co.; 1974. ISBN: 90-277-0441-4.
  • Graham RL, Knuth DE, Patashnik O. Concrete mathematics. A foundation for computer science. 2nd ed. Reading (MA): Addison-Wesley Publishing Company; 1994. ISBN: 0-201-55802-5.
  • Roman S. The umbral calculus. New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers]; 1984. (Pure and applied mathematics; 111). ISBN: 0-12-594380-6.
  • Matiyasevich Y. Unsolved problems: what divisibility properties do generalized harmonic numbers have? Am Math Mon. 1992;99:74–75. doi: 10.1080/00029890.1992.11995809.
  • Kim TK, Kim DS. Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers. Russ J Math Phys. 2023;30:62–75. doi: 10.1134/s1061920823010041.
  • Carlitz L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util Math. 1979;15:51–88.