354
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A modified projective forward-backward splitting algorithm for variational inclusion problems to predict Parkinson's disease

&
Article: 2314650 | Received 05 Dec 2023, Accepted 30 Jan 2024, Published online: 14 Feb 2024

References

  • Bauschke HH, Borwein JM. On projection algorithms for solving convex feasibility problems. SIAM Rev. 1996;38:367–426. doi: 10.1137/S0036144593251710
  • Bauschke HH, Combettes PL. Convex analysis and monotone operator theory in Hilbert spaces. Berlin: Springer; 2011.
  • Chen M, Li Y, Luo X, et al. A novel human activity recognition scheme for smart health using multilayer extreme learning machine. IEEE Internet Things J. 2019;6:1410–1418. doi: 10.1109/JIoT.6488907
  • Polyak B. Some methods of speeding up the convergence of iteration methods. USSR Comput Math Math Phys. 1964;4(5):1–17. doi: 10.1016/0041-5553(64)90137-5
  • Bot RI, Csetnek ER. An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer Algorithms. 2016;71(3):519–540. doi: 10.1007/s11075-015-0007-5
  • Hanjing A, Bussaban L, Suantai S. The modified viscosity approximation method with inertial technique and Forward–Backward algorithm for convex optimization model. Mathematics. 2022;10(7):1036. doi: 10.3390/math10071036
  • Inthakon W, Suantai S, Sarnmeta P, et al. A new machine learning algorithm based on optimization method for regression and classification problems. Mathematics. 2020;8(6):1007. doi: 10.3390/math8061007
  • Peeyada P, Dutta H, Shiangjen K, et al. A modified forward-backward splitting methods for the sum of two monotone operators with applications to breast cancer prediction. Math Methods Appl Sci. 2023;46(1):1251–1265. doi: 10.1002/mma.v46.1
  • Tan B, Cho SY. Strong convergence of inertial forward–backward methods for solving monotone inclusions. Appl Anal. 2022;101(15):5386–5414. doi: 10.1080/00036811.2021.1892080
  • Moudafi A, Oliny M. Convergence of a splitting inertial proximal method for monotone operators. J Comput Appl Math. 2003;155:447–454. doi: 10.1016/S0377-0427(02)00906-8
  • Peeyada P, Suparatulatorn R, Cholamjiak W. An inertial Mann forward-backward splitting algorithm of variational inclusion problems and its applications. Chaos Solit Fractals. 2022;158:112048. doi: 10.1016/j.chaos.2022.112048
  • Al-Dhaifallah M, Nisar KS, Agarwal P, et al. Modeling and identification of heat exchanger process using least squares support vector machines. Therm Sci. 2017;21(6 Part B):2859–2869. doi: 10.2298/TSCI151026204A
  • Baleanu D, Hasanabadi M, Vaziri AM, et al. A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach. Chaos Solit Fractals. 2023;167:113078. doi: 10.1016/j.chaos.2022.113078
  • Baleanu D, Arshad S, Jajarmi A, et al. Dynamical behaviours and stability analysis of a generalized fractional model with a real case study. J Adv Res. 2023;48:157–173. doi: 10.1016/j.jare.2022.08.010
  • Boonsatit N, Rajchakit G, Sriraman R, et al. Finite-fixed-time synchronization of delayed Clifford-valued recurrent neural networks. Adv Differ Equ. 2021;2021(1):1–25. doi: 10.1186/s13662-021-03438-1
  • Rajchakit G, Agarwal P, Ramalingam S. Stability analysis of neural networks. Singapore: Springer; 2021.
  • Elshewey AM, Shams MY, El-Rashidy N, et al. Bayesian optimization with support vector machine model for Parkinson disease classification. Sensors. 2023;23(4):2085. doi: 10.3390/s23042085
  • Chen HL, Wang G, Ma C, et al. An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson's disease. Neurocomputing. 2016;184:131–144. doi: 10.1016/j.neucom.2015.07.138
  • Bauschke HH, Combettes PL. Convex analysis and monotone operator theory in Hilbert spaces. New York: Springer; 2011. (CMS Books in Mathematics).
  • Brézis H. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Amsterdam, Netherlands: North-Holland; 1973. (Math. Studies 5).
  • Zhang J, Li Y, Xiao W, et al. Non-iterative and fast deep learning: multilayer extreme learning machines. J Franklin Inst B. 2020;357(13):8925–8955. doi: 10.1016/j.jfranklin.2020.04.033
  • López G, Martn-Mrquez V, Wang F, et al. Forward-backward splitting methods for accretive operators in Banach spaces. Abstr Appl Anal. 2012;2012:109236.
  • Goebel K, Kirk WA. Topics in metric fixed point theory. Cambridge: Cambridge University Press; 1990.
  • Auslender A, Teboulle M, Ben-Tiba S. A logarithmic-quadratic proximal method for variational inequalities. Boston, MA: Springer; 1999.
  • Dua D, Graff C. UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science; 2019. Available at http://archive.ics.uci.edu/ml.
  • Little M, Mcsharry P, Roberts S, et al. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Nat Preced. 2007;2007:1–1.
  • Little M, McSharry P, Hunter E, et al. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. Nat Preced. 2008;2008:1–1.
  • Cho H, Kim Y, Lee E, et al. Basic enhancement strategies when using Bayesian optimization for hyperparameter tuning of deep neural networks. IEEE Access. 2020;8:52588–52608. doi: 10.1109/Access.6287639
  • Jakkula V. Tutorial on support vector machine (SVM). Sch EECS Wash State Univ. 2006;37:3.
  • Cutler A, Cutler DR, Stevens JR. Random forests. In: Zhang C, Ma Y, editors. Ensemble machine learning. Berlin, Germany: Springer; 2012. p. 157–175.
  • Nick TG, Campbell KM. Logistic regression. Top Biostat. 2007;404:273–301. doi: 10.1007/978-1-59745-530-5
  • Zhang H. The optimality of naive Bayes. Aa. 2004;1(2):3.
  • Xingyu MA, Bolei MA, Qi F. Logistic regression and ridge classifier; 2022.
  • Kotsiantis SB. Decision trees: a recent overview. Artif Intell Rev. 2013;39:261–283. doi: 10.1007/s10462-011-9272-4
  • Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks, IEEE Cat. 2004;2(04CH37541):985–990.