232
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Feedback control of the COVID-19 outbreak based on active disturbance rejection control

, , &
Article: 2325520 | Received 20 Apr 2023, Accepted 24 Feb 2024, Published online: 11 Mar 2024

References

  • Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. Feb. 2020;382(8):727–733. doi:10.1056/NEJMoa2001017
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. Feb. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  • WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2023 Apr. 12]. Available from: https://covid19.who.int
  • World Health Organization. Considerations for implementing and adjusting public health and social measures in the context of COVID-19: interim guidance, 14 June 2021. World Health Organization, WHO/2019-nCoV/Adjusting_PH_measures/2021.1, 2021 [Internet]. [cited 2023 April 12]. Available from: https://apps.who.int/iris/handle/10665/341811
  • Stewart G, Heusden K, Dumont GA. How control theory can help us control COVID-19. IEEE Spectr. Jun. 2020;57(6):22–29. doi:10.1109/MSPEC.2020.9099929
  • Banholzer N, Van Weenen E, Lison A, et al. Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19 during the first epidemic wave. PLoS One. Jun. 2021;16(6):e0252827. doi:10.1371/journal.pone.0252827
  • Kraemer MUG, Yang CH, Gutierrez B, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science. May. 2020;368(6490):493–497. doi:10.1126/science.abb4218.
  • Milani F. COVID-19 outbreak, social response, and early economic effects: a global VAR analysis of cross-country interdependencies. J Popul Econ. Jan. 2021;34(1):223–252. doi:10.1007/s00148-020-00792-4
  • Bavel JJV, Baicker K, Boggio PS, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav. Apr. 2020;4(5):460–471. doi:10.1038/s41562-020-0884-z
  • Galea S, Merchant RM, Lurie N. The mental health consequences of COVID-19 and physical distancing: the need for prevention and early intervention. JAMA Intern Med. Jun. 2020;180(6):817. doi:10.1001/jamainternmed.2020.1562
  • Duan H, Bao Q, Tian K, et al. The hit of the novel coronavirus outbreak to China’s economy. China Econ Rev. Jun. 2021;67:101606. doi:10.1016/j.chieco.2021.101606
  • Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc R Soc Lond Ser Contain Pap Math Phys Character. 1927;115(772):700–721.doi:10.1098/rspa.1927.0118.
  • Ianni A, Rossi N. Describing the COVID-19 outbreak during the lockdown: fitting modified SIR models to data. Eur Phys J Plus. Nov. 2020;135(11):885. doi:10.1140/epjp/s13360-020-00895-7
  • Kucharski AJ, Russell TW, Diamond C, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. May 2020;20(5):553–558. doi:10.1016/S1473-3099(20)30144-4
  • Cooper I, Mondal A, Antonopoulos CG. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals. Oct. 2020;139:110057. doi:10.1016/j.chaos.2020.110057
  • Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number (R0). Emerg Infect Dis. Jan. 2019;25(1):1–4. doi:10.3201/eid2501.171901
  • Ianni A, Rossi N. SIR-PID: a proportional–integral–derivative controller for COVID-19 outbreak containment. Physics. Jun. 2021;3(3):459–472. doi:10.3390/physics3030031
  • Join C, d'Onofrio A, Fliess M. Toward more realistic social distancing policies via advanced feedback control. Automation. May. 2022;3(2):286–301.doi:10.1101/2022.05.25.22275562.
  • Aljuboury AS, Abedi F, Shukur HM, et al. Mathematical modeling and control of COVID-19 using super twisting sliding mode and nonlinear techniques. Comput Intell Neurosci Jun. 2022;2022:1–13. doi:10.1155/2022/8539278
  • Han J. From PID to active disturbance rejection control. IEEE Trans Ind Electron. Mar. 2009;56(3):900–906. doi:10.1109/TIE.2008.2011621
  • Humaidi AJ, Badr HM, . Linear and nonlinear active disturbance rejection controllers for single – link flexible joint robot manipulator based on PSO tuner. J Eng Sci Technol Rev. Apr. 2018;11(3):133–138. doi:10.25103/jestr.113.18
  • Humaidi AJ, Badr HM, Ajil AR. Design of Active Disturbance Rejection Control for Single-Link Flexible Joint Robot Manipulator. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). Oct. 2018: 452–457. doi:10.1109/icstcc.2018.8540652.
  • Humaidi AJ, Badr HM, Hameed AH.. PSO-based active disturbance rejection control for position control of magnetic levitation system. 2018 5th International Conference on Control, Decision and Information Technologies (CoDIT). Apr. 2018: 922–928doi:10.1109/CoDIT.2018.8394955.
  • Dong L, Zhang Y, Gao Z. A robust decentralized load frequency controller for interconnected power systems. ISA Trans. May. 2012;51(3):410–419. doi:10.1016/j.isatra.2012.02.004
  • Cui W, Tan W, Li D, et al. Tuning of linear active disturbance rejection controllers based on step response curves. IEEE Access. 2020;8:180869–180882. doi:10.1109/ACCESS.2020.3028459
  • Aljuboury AS, Zeebaree SR, Abedi F, et al. A new nonlinear controller design for a TCP/AQM network based on modified active disturbance rejection control. Complexity. Jun. 2022;2022:1–16. doi:10.1155/2022/5501402
  • Kennedy J, Eberhart R. Particle swarm optimization.. Proceedings of ICNN'95 - International Conference on Neural Networks. Dec. 1995: 1942–1948. doi:10.1109/ICNN.1995.488968.